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ABSTRACT 
 
 
 
This study examined the effects of noise, temperature, humidity, motion and light on 

the sleep patterns of the crew of HSV-2 SWIFT during Gulf of Mexico Exercise (GOMEX) 

05-1.  HSV-2 SWIFT was chosen for this study to examine crew sleep on an unconventional 

hull type manned with a small crew.  Noise dosimeters, temperature and humidity monitors, 

actiwatches and questionnaires were used to quantify the data.  With the exception of light, 

the independent variables did not have significant effect upon participant sleep.  This is 

likely due to the limited range of the independent variables and the small number of 

participants in this study.  There were two findings in this study; the relationship between 

the demographic variable sea time and participant sleep and the relationship between the 

independent variable light and participant sleep.  Due to the limitations in the current study, 

it is recommended that further studies be conducted in more extreme operational 

environments.  Additionally, studies such as the one discussed in this thesis, should be 

completed on different platforms to determine the differences in environmental factors that 

affect sleep between hull types so that the results can be applied to future vessel design.  
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EXECUTIVE SUMMARY 
 
 
 

With the added emphasis being placed on reducing crew sizes onboard ships and the 

increased workload demanded by the asymmetric nature of the Global War on Terror 

(GWOT), it is necessary to investigate the factors that may influence crew performance.  

Sleep is an important element in an individual’s performance.  Sleep, in turn, is influenced 

by many factors, both environmental and personal.  This study quantified the effects of 

noise, temperature, humidity, motion and light on the sleep patterns of the crew of HSV-2 

SWIFT during Gulf of Mexico Exercise (GOMEX) 05-1.   

SWIFT was chosen for this study because she is a catamaran that incorporates 

technologies that allow her to deploy to sea with a crew of 41.  SWIFT is also being used to 

model the Littoral Combat Ship (LCS) and test Sea Power 21 concepts, such as Sea Basing, 

and the use of LCS mission module packages (HSV SWIFT Demonstrates, 2004).  

Noise dosimeters, temperature and humidity monitors, actiwatches and 

questionnaires were used to collect data on independent variables (noise, temperature, 

humidity, motion and light).  Actiwatches were also worn by the crew of SWIFT to measure 

the dependent variable, sleep.      

The weather during GOMEX 05-1 was mild, limiting the range of three of the 

independent variables, temperature, humidity and motion.  Additionally, since SWIFT was 

used as the command and control ship for the exercise, she was not required to operate at 

high speeds or with large maneuvers.   

Results of this study show that with the exception of light, the independent variables 

did not have significant affect upon participant sleep.  This is likely due to the limited range 

of the majority of the independent variables and the small number of participants in this 

study.   

The participants in this study averaged between 6 and 7 hours of sleep per day for 

the majority of the exercise.  Averaging less than 8 hours of sleep a day will cause an 

increase in sleep debt.  Sleep debt is the difference between an actual night’s sleep and a full 



 xviii

night’s sleep (8 hours) and its effects are cumulative.  This debt must always be repaid to 

fully recover from the period of sleep deprivation (Dement & Vaughan, 1999).  Sleep 

deprivation in turn can lead to reduced performance, concentration, reaction times and 

memory consolidation.  Deficient sleep can produce increased memory lapses, accidents, 

injuries, behavior problems and mood problems (National Heart, Lung, and Blood Institute, 

2004). Human performance is not always affected by short sleep periods, but there is a 

cumulative effect (Matthews, Davies, Westerman & Stammers, 2000).  It is possible that in 

a MIW operation or exercise greater in length than GOMEX 05-1, you would witness a 

decrease in the performance of the crew of the SWIFT.  While physical tasks are relatively 

unchanged by periods of sleep deprivation, cognitive tasks are greatly affected (Belenky, 

Krueger, Balkin, Headley & Solick, 1987; How et al., 1994).  With an increase in sleep 

deprivation among the crew of the SWIFT while coordinating the movements of other US 

Navy warships in a Mine Interdiction Warfare (MIW) exercise or operation, mistakes could 

be made that adversely impact the exercise or operation. 

Analysis of the demographic variables investigated whether demographic factors and 

the averaged values of the environmental variables affected participant sleep. Sea time was 

found to be highly correlated with the average amount of sleep a participant received during 

GOMEX 05-1.  From the model of sea time and average participant sleep we concluded that 

for every year of sea time a participant had, his sleep dropped by approximately 11 minutes 

per day.  Light was also found in this analysis to have a significant impact on participant 

sleep efficiency.  From the model of light and participant sleep efficiency, we concluded 

that for every increase in light value, as measured in lux, participant sleep efficiency 

dropped by 4%.   

The type of research conducted here needs to be pursued further, especially with the 

small crew sizes demanded by the US Navy in future vessel designs.  The identification of 

variables that contribute more to sleep will also give engineers information they can use to 

better build ships in the future.   
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I. INTRODUCTION 

A.  OVERVIEW 
According to Chief of Naval Operations (CNO) ADM Vernon E. Clark: “The 

LCS is key to enhancing our ability to establish sea superiority not just for our carrier 

strike groups and expeditionary strike groups but for future joint logistics, command and 

control, and prepositioned ships moving to support forces ashore” (Truver, 2003). 

The Littoral Combat Ship (LCS) is the future of the United States Navy.  Moving 

away from the traditional blue water focus of the US Navy, LCS will enable dominance 

in the littorals and revolutionize sea based power projection.  High Speed Vessel SWIFT 

(HSV-2) was leased from Incat Australia as a test platform for LCS.  She is an aluminum 

hulled catamaran with a semiplaning wave piercing hull that can reach speeds up to 42 

knots (O’Neil, 2003). 

HSV-2 SWIFT numbers 40 sailors per crew (Ryan & Grimland, 2003).  A 

decrement in the performance of any individual will affect the performance of the crew to 

a greater degree than would be found on a traditionally manned US Navy warship.   

Sleep deprivation can severely impact personnel (Allnutt, Haslam, Rejman & 

Green, 1990; How, et al., 1994; Belenky, et al., 1987).  Noting the crew size of SWIFT, it 

is vital that the US Navy understand the causes of sleep deprivation among her crew.  A 

preliminary study conducted onboard SWIFT in May, 2004 found most of the factors 

causing disturbed sleep are environmental factors, such as noise, temperature, light and 

motion (McCauley, Miller & Matsangas, 2004).   

Several studies have quantified environmental effects such as noise, temperature, 

humidity, light and motion on sleep (Griefahn, 1990; Johnson & Kobrick, 2001; Lewy, 

Wehr & Thomas, 1980; O’Hanlon, Miller & Royal, 1977), but none studied their 

combined effects onboard US Navy warships.  This thesis will describe the importance of 

sleep and the impact of sleep deprivation on crew performance.  This thesis attempted to 

address the question of whether the shipboard environmental effects of noise, 

temperature, humidity, motion and light impact the sleep patterns of the crew of HSV-2 
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SWIFT.  Unfortunately, due to the limited range in the environmental conditions and the 

small number of participants, this question could not be answered.  However, this study 

does discuss a methodology from which a more robust study can be formulated to 

analyze these environmental effects on sleep. 

To conduct a more vigorous study, measurements of the environmental effects of 

noise, temperature, humidity, motion and light should be measured in disparate locations, 

under varying conditions, with a greater number of participants and, if possible, across 

multiple platforms.  This would increase the amount and range of the data to allow for a 

more powerful statistical approach than the descriptive statistics used in this thesis.   

A combination of environmental and personal factors will affect the sleep of 

sailors and marines living onboard US Navy warships.  Sleep deprivation will more likely 

occur in more extreme operational conditions than seen in this study.  For this reason, 

further studies should be conducted in extreme operational environments, such as those 

found in the Arabian Gulf during summer.  Additionally, studies such as the one 

discussed in this thesis should be completed on different platforms to determine the 

differences in environmental factors that affect sleep between hull types so that the 

results can be applied to future vessel design.   

B. BACKGROUND 
SWIFT took part in GOMEX 05-1, conducted in the vicinity of Naval Surface 

Warfare Center (NSWC) Panama City, FL, December 2004.  GOMEX 05-1 was a mine 

warfare exercise that graduated mine countermeasures squadron staff and ships to 

deployment ready status.  GOMEX 05-1 included air, surface and Explosive Ordnance 

Disposal (EOD) assets. SWIFT was used as the mine countermeasures command flagship 

and coordinated the movements of the other participants in the exercise (Naval Support 

Activity-Panama City, 2005).   

This thesis will examine the effects of noise, temperature, humidity, motion and 

light on the sleep patterns of the crew of HSV-2 SWIFT during GOMEX 05-1.  HSV-2 

SWIFT was chosen for this study to examine crew sleep on an unconventional hull type 

manned with a small crew.  Noise dosimeters, temperature and humidity monitors, 

actiwatches and questionnaires will be used to quantify the data.   
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C. SCOPE, LIMITATIONS, AND ASSUMPTIONS 
This study observed the sleep patterns of 21 sailors onboard one of the US 

military’s high speed vessels in order to capture data from a crew operating onboard a 

non-conventional hull form.  Participants in this study were officers and enlisted sailors 

of HSV-2 SWIFT.  The participants are unique among US sailors in that they serve 

onboard one of three high speed vessels being used by the US military.  These 21 sailors, 

therefore, represent a relatively large subset from a small population. 

The amount of equipment available for this study was limited.  Five noise 

dosimeters, five temperature and humidity monitors and 23 actiwatches were used to 

collect data.  The weather during GOMEX 05-1 was mild, limiting the range of three of 

the variables measured: temperature, humidity, and motion.  Additionally, since SWIFT 

was used as the command and control ship for the exercise, she was not required to 

operate at high speeds or with large maneuvers 

This was an observational study and had neither a control group nor baseline 

conditions.  Participants were volunteers, therefore selection was not randomized.  Due to 

these limitations, caution should be taken in extending the results of this study to the 

entire population of the US Navy.   

D. HUMAN SYSTEMS INTEGRATION  
Traditionally, Human Systems Integration (HSI) incorporates the seven domains 

listed below (MANPRINT Domains, 2005).  The US Navy has added an eighth domain, 

habitability.  Habitability includes workspace and berthing design and hazardous 

environmental impacts on humans (Dolan, 2005).  This thesis examines the 

environmental factors that influence sleep and evaluates human effectiveness based on a 

validated performance model.  As such, it specifically addresses issues relating to 

manpower, personnel, human factors engineering, system safety, health hazards, 

survivability and habitability.   

MANPOWER is the number of military and civilian personnel required 
and potentially available to operate, maintain, sustain, and provide training 
for systems 
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PERSONNEL defines the cognitive and physical capabilities required to 
be able to train for, operate, maintain, and sustain materiel and information 
systems. 

TRAINING is the instruction or education, and-on-the-job or unit training 
required to provide personnel their essential job skills, knowledge, and 
attitudes. 

HUMAN FACTORS ENGINEERING defines the integration of human 
characteristics into system definition, design, development, and evaluation 
to optimize human-machine performance under operational conditions.  

SYSTEM SAFETY involves the design features and operating 
characteristics of a system that serve to minimize the potential for human 
or machine errors or failure that cause injurious accidents.  

HEALTH HAZARDS The design features and operating characteristics 
of a system that create significant risks of bodily injury or death; 
prominent sources of health hazards include: acoustics energy, chemical 
substances, biological substances, temperature extremes, radiation energy, 
oxygen deficiency, shock (not electrical), trauma, and vibration.  

SOLDIER SURVIVABILITY defines the characteristics of a system that 
can reduce fratricide, detectability and probability of being attacked, as 
well as minimize system damage, soldier injury, and cognitive and 
physical fatigue. (MANPRINT Domains, 2005) 

Sleep can have a detrimental affect upon cognitive and physical performance 

(Allnutt et al., 1990; How et al., 1994; Belenky et al., 1987).  By measuring sleep, this 

thesis falls under the manpower, personnel and human factors engineering domains.  This 

thesis quantifies the environmental factors affecting sleep and identifies the variables that 

weigh most heavily on sleep.  This type of information will give engineers information 

they can use to better plan future ships.  As such, this thesis falls under the system safety, 

health hazards, survivability and habitability domains of HSI. 

E. THESIS ORGANIZATION 

Chapter II contains a review of the literature for the dependent variable sleep and 

studies that examined the relationships between the independent variables and sleep.  

Chapter III explains the methods used in this study.  Chapter IV contains the statistical 

analysis used in this study.  Chapter V concludes with a discussion of the results and 

recommendations for future research. 
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II. LITERATURE REVIEW 

 
A.  OVERVIEW 

The United States military has identified sleep as an important component in 

determining human performance.  Section B begins with a review of sleep and its impact 

on performance.  Section C examines the effects of motion on sleep. Section D 

investigates the impact of temperature and humidity on sleep.  Section E describes how 

noise disturbs sleep.  Section F examines the consequences of light exposure on sleep.  

Section G concludes with an examination of emerging US Navy hull forms. 

B.  SLEEP 
1. Introduction 
Sleep is an intricate cycle of stages that is largely responsible for controlling 

bodily functions such as gastrointestinal, cardiovascular, health, immune function and 

cognitive processing.  It used to be thought that the brain was quiescent during sleep, but 

it is known now that in some stages of sleep, the brain activity is more active than while 

waking.  Overall, brain activity during sleep only decreases by 10 percent overall as 

compared to waking activity (Maas, 2001). 

2.  Sleep Stages 
Sleep stages can be labeled as either Rapid Eye Movement (REM) or normal, 

non-REM, sleep.  There are 4 levels of non-REM sleep, with Stage 1 being the lightest 

and Stage 4 the deepest (Matthews et al., 2000).  In Stage 1 sleep, heart rate stabilizes, 

breathing becomes shallow and a subject may retain awareness of his/her surroundings; 

this stage can persist from 10 seconds to 10 minutes.  Stage 2 sleep may last from 10 to 

20 minutes following Stage 1 sleep and is the beginning of actual sleep.  In this stage, 

subjects will become detached from their surroundings.  Stage 3 sleep proceeds into 

Stage 4 and is characterized by slow wave brain activity.  In Stage 4 sleep, body muscles 

are completely relaxed, blood pressure drops and blood supply to the brain is at a 

minimum.  In addition, pulse and respiration are slowed.  During slow wave sleep, much 

of the human growth hormone (HGH) is released, providing for cell restoration and 

growth and increasing the effectiveness of the immune system.  After 30 to 40 minutes of 
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stage 4 sleep, the body begins to move back through sleep stages 3 and 2 toward REM 

sleep.  This first REM cycle lasts several minutes and is where the subject is likely to first 

dream.  Dreaming occurs frequently in REM, although it is seen in other stages of sleep 

also.  The subject’s eyes will also begin to flit back and forth, hence the term Rapid Eye 

Movement.  During REM sleep, blood pressure, heart rate, respiratory rate and blood 

flow to the brain increases.  Throughout REM sleep, the brain inhibits neural commands 

to the motor functions to keep the body from moving about as the brain is highly active.  

REM sleep is associated with memory storage and retention, memory organization and 

reorganization, new learning and retention. This cycle continues every 90 to 110 minutes 

until the subject awakens (Maas, 2001). 

Deeper stages of sleep dominate the early sleep period with lighter stages 

predominant later in the sleep period.  REM sleep duration increases as the period of 

sleep increases (Matthews et al., 2000).  Figure 1 is a graphic display of a typical sleep 

period.   

 
Figure 1.   Sleep Stages (From: Miller, 2005) 
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If a person’s sleep is shortened, he/she may not enjoy the recuperative effects of 

slow wave sleep and the benefits to cognitive performance resulting from both REM 

sleep and non-REM sleep (Miller, 2005).  It is believed that for most adults, 8 hours of 

sleep is necessary to receive full beneficial effects of sleep (Maas, 2001). 

3.  Sleep Debt 
Sleep debt can be defined as “the increased pressure for sleep that results from an 

inadequate amount of physiologically normal sleep” (Van Dongen, Rogers & Dinges, 

2003, p. 6).  It is the difference between an actual night’s sleep and a full night’s sleep (8 

hours) and its effects are cumulative.  For example, if a person averages 4 hours of sleep 

per day (out of the required 8) for an entire week, the subject will have accumulated 28 

hours of sleep debt over that week.  This debt must always be repaid to fully recover from 

the period of sleep deprivation (Dement & Vaughan, 1999). 

4. Circadian Rhythms 
Circadian rhythms are “an intricate and orderly series of psychological and 

physiological changes that occur approximately every twenty-four hours” (Maas, 2001, p. 

46).  Circadian rhythms are found in all animals and, without external cues, will 

approximate the revolution of Earth.  Human circadian clocks average 24.18 hours across 

age groups (Czeisler, et al., 1999). 

Circadian rhythms are regulated by the suprachiasmatic nucleus (SCN), the 

body’s biological clock. The SCN controls body temperature, hormone secretion, urine 

production and changes in blood pressure, bodily operations timed with the sleep/wake 

cycle (National Institute of Neurological Disorders and Stroke, 2005).  Disruption of 

circadian rhythms can result in fatigue, negative bodily symptoms and subjective 

displeasure (Waye, Clow, Edwards, Hucklebridge & Rylander, 2003). 

Circadian rhythms vary throughout the day with predictable dips occurring in 

arousal between 2-7am and 2-5pm.  These dips are correlated with human performance 

(Mitler, et al., 1987).  Disturbances in circadian rhythms often result in disturbances in 

sleep (Arendt, 2000).  An external time signal, such as an alarm clock, can affect 

circadian rhythms.  These are known as zeitgebers (“time givers” in German) (National 

Institute of Neurological Disorders and Stroke, 2005).  
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Czeisler, Weitzman, Moore-Ede, Zimmerman and Knauer (1980) determined that 

length of sleep was correlated with body temperature fluctuations associated with the 

human circadian cycle and not with hours of wakefullness.  In addition, REM sleep 

latency, REM sleep buildup, sleep time choice and subjective alertness measurements 

were also correlated to temperature fluctuations.   

5.  Measurements 
In a clinical setting, sleep is measured using polysomnography (PSG), which 

includes recording electrical brain activity measured with an electroencephalogram 

(EEG), which utilizes electrodes positioned on the scalp.  PSG is also uses eye 

movements through electrooculography (EOG) using electrodes placed near the eyes.  An 

electromyogram(EMG) measures the electrical fluctuations caused by muscle 

movements.  Electrodes are placed over muscles in the chin which, for humans, displays 

a large amount of oscillation during sleep.  Figure 2 displays the placement of PSG 

graphically (National Institutes of Health, 2005).    

 
Figure 2.   Placement of electrodes to determine EEG, EOG, and EMG (From: 

National Institutes of Health, 2005). 
 

However, for assessing sleep in most field settings, PSG is not feasible.  

Actigraphs have been found to be cost effective in measuring “longitudinal, natural 
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assessments of sleep-wake patterns” (Sadeh, Hauri, Kripke & Lavie, 1995, p. 300).  

Horne, Pankhurst, Reyner, Hume and Diamond (1994) found that actigraphs offer an 

easier, less expensive and practical substitute for EEGs, achieving an 88% equivalency 

with EEGs in detecting wakefulness in their study.  Friedman et al. (2000) found that the 

results of sleep measurements using actigraphs and PSG were highly correlated.   

6.  Sleep Deprivation at Sea 
Sleep periods for sailors can be irregular and disrupted.  For example, U.S. 

submarines operate on an 18 hour rotating work schedule, with sleep disrupted by drills, 

causalities, maintenance, routine operations, wartime operations, etc.  SWIFT numbers 

40 personnel per crew; out of necessity with this size crew, most will stand watch.  

During a study of merchant marine personnel, it was found that watchstanders averaged 

overall less total sleep, 6.6 hours, than personnel who did not stand watch.  In addition, 

watchstander sleep was found to be more broken and taking place during physiologically 

unsuitable times (Sanquist, Raby & Maloney, 1996).  In another study conducted onboard 

five Coast Guard cutters, 10-45% of the crews experienced one or more episodes of mild 

fatigue in a low operational tempo environment, with watchstanders obtaining less sleep 

and more broken periods of sleep (Miller, Smith & McCauley, 1998).  

7. Sleep and Performance 
Harrison and Horne (2000) state: 

If there is a particular need to draw on innovation, flexibility of thinking, 
avoidance of distraction, risk assessment, awareness for what is feasible, 
appreciation for one’s own strength and weaknesses at that current time 
(metamemory), and ability to communicate effectively, then these are the 
very behaviors that we feel are most likely affected by SD [sleep 
deprivation], not only when people are working alone but also in a team. 
(p. 246) 

Insufficient sleep can result in reduced performance, concentration, reaction times 

and memory consolidation.  Deficient sleep can produce increased memory lapses, 

accidents, injuries, behavior problems and mood problems (National Heart, Lung, and 

Blood Institute, 2004).  

Both individual and team performance decrease with diminished sleep (Allnutt et 

al., 1990; How et al., 1994; Belenky et al., 1987).  Human performance is not always 
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affected by short sleep periods, but there is a cumulative effect (Matthews et al., 2000).  

Belenky et al. (2003) conducted a 10 day experiment in which participants were broken 

into groups allowed to obtain 3, 5, 7 and 9 hours of sleep for the first 7 days, followed by 

three days of recovery.  Over the 7 day period, performance levels in a psychomotor 

vigilance test dropped for every group, with the exception of the 9 hour group.  During 

the recovery period, the performance levels for the 5 and 7 hour groups stayed at the 

reduced level observed during the last days of sleep restriction, displaying no recovery.  

The 3 hour group had a high rate of recovery the first day, as measured by the 

performance test, but then leveled out for the last two days, still never recovering baseline 

levels.  The 9 hour group stayed at the baseline level throughout the recovery period.  

Figure 3 displays this graphically.   

 
Figure 3.   Mean psychomotor vigilance task speed (and standard error) across days 

as a function of time in bed group (From: Belenky et al., 2003, p. 6). 
 

The researchers concluded from these results that the human body appears 

adaptable to sleep deprivation, maintaining a reduced performance for a period of time.  
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In addition, this adaptation continues even during periods of recovery, impeding full 

recovery from sleep deprivation.  When queried about their level of impairment, 

participants failed to report impairment.  This result speaks to the insidious nature of 

sleep deprivation.  Sleep deprived individuals do not know they are impaired. 

While physical tasks are relatively unchanged by periods of sleep deprivation, 

cognitive tasks are greatly affected (Belenky et al., 1987; How et al., 1994).  Areas of the 

brain in which cognitive functions are performed show progressively less activity as the 

time of sleep deprivation increases.  There is a 25% loss in performance of cognitive 

tasks with each day of sleep deprivation (Belenky, n.d.).  

Higher cognitive tasks such as those involving calculation, creativity and thinking 

ahead are more susceptible to sleep deprivation than other cognitive tasks that are not as 

demanding (Belenky et al., 1987; Evans, Mackie & Wylie, 1991).  Task duration, 

difficulty, feedback, practice, complexity and short term memory use are all factors that 

play into how well a task is performed if an individual is sleep deprived.  Tasks that are 

interesting, contain feedback, are well practiced and are motivating can decrease the 

affects of sleep deprivation.  In addition, increasing the time allowed to complete a task 

can also decrease the affects of sleep deprivation (Belenky et al., 1987). 

Banderet, Stokes, Francesconi, Kowal and Naitoh (1980) reported the results of a 

study in which soldiers in a U.S. Army Artillery Fire Direction Center (FDC) team were 

given missions over a 36 hour period without sleep.  The investigators found that routine, 

repetitive functions were adequately performed, but that higher level cognitive functions, 

such as checking to see if missions erroneously targeted civilian or friendly force 

locations, broke down.   

Uninteresting and routine tasks, such as monitoring a radar display, are also 

highly susceptible to sleep deprivation (Wilkinson, 1964).  Reductions in team 

performance due to sleep deprivation have been found to be less than reductions in 

individual performance.  This may be due to team members compensating for those most 

affected by sleep deprivation (Allnutt et al., 1990). 
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Figure 4.   Sleep patterns at the National Training Center (After: Belenky, n.d., p. 4) 
 

It has been found that military leaders obtain less sleep than subordinates.  Figure 

4 displays the outcome of a study at the National Training Center (NTC) where it was 

discovered that the lower ranks and lower echelons of command received more sleep than 

higher ranks and higher echelons of command (Belenky, n.d.).  In the military services, 

there is almost a myth of self-deprivation (including sleep) that one should aspire to in 

military organizations, possibly leading to injury and death (Shay, 1998). 

8. Managing Sleep Loss 
Wickens, Lee, Liu, and Becker (2004) outline several methods for managing or 

reducing sleep loss, specifically: naps, sleep credits (defined as sleeping for long periods 

before times of known sleep deprivation), sleep management plans, stimulant drugs (such 

as caffeine) and prohibiting work during periods of low circadian activity.  External 



13 

motivation has also been found to be effective in combating sleep deprivation (Matthews 

et al., 2000). 

Some companies are allowing sleep deprived personnel to nap, such as Burlington 

Northern Santa Fe, the second largest railroad company in America; company officials 

report their employees who nap are more effective (On-the-Job Naps, 1998). 

Other strategies include protecting night shift workers from sunlight before they 

sleep and appropriate timing of sleep according to circadian rhythms of sailors to 

determine the most effective sleep schedules.  In a study conducted by the Naval 

Postgraduate School (NPS) at Recruit Training Center, Great Lakes, Illinois, it was 

determined that a shift in an 8 hour sleep period gave recruits an average of 22 minutes 

more sleep each night (Baldus, 2002).  In another study, NPS researchers studied the 

effects of shift work and high operational tempo during Operation Enduring Freedom 

(OEF) in February 2002 onboard the JOHN C. STENNIS (CVN-74).  The entire crew 

was put on the night shift to support nighttime flight operations.  The study concluded 

that there were great differences in the quality and quantity of sleep determined by where 

personnel worked, particularly topside personnel.  The study proposed a possible link 

between sunlight exposure prior to rest and lack of sleep due to an inhibition in the 

release of melatonin, which results in sleep deprivation.  Other factors in sleep 

deprivation may have included work environments, light levels, health issues, combat 

stress and the type of work performed (Nguyen, 2002).   

9. Conclusion  
Sleep can be labeled as either Rapid Eye Movement (REM) or normal, non-REM, 

sleep.  There are 4 levels of non-REM sleep, with Stage 1 being the lightest and Stage 4 

the deepest (Matthews, et al., 2000).   If a person’s sleep is shortened, he/she may not 

enjoy the recuperative effects of slow wave sleep and the benefits to cognitive 

performance resulting from both REM sleep and non-REM sleep (Miller, 2005).  

Sleep is an essential component of human performance.  Insufficient sleep can 

result in reduced performance, concentration, reaction times and memory consolidation.  

Deficient sleep can produce increased memory lapses, accidents, injuries, behavior 

problems and mood problems (National Heart, Lung, and Blood Institute, 2004).  
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Insufficient sleep can result in sleep debt.  Sleep debt is the difference between an actual 

night’s sleep and a full night’s sleep (8 hours) and its effects are cumulative. This debt 

must always be repaid to fully recover from the period of sleep deprivation (Dement & 

Vaughan, 1999).   

Circadian rhythms are “an intricate and orderly series of psychological and 

physiological changes that occur approximately every twenty-four hours” (Maas, 2001, p. 

46).  Circadian rhythms vary throughout the day with predictable dips occurring in 

arousal between 2-7am and 2-5pm.  These dips are correlated with human performance 

(Mitler, et al., 1987).   

Wickens et al. (2004) outline several methods for managing or reducing sleep 

loss, specifically: naps, sleep credits (defined as sleeping for long periods before times of 

known sleep deprivation), sleep management plans, stimulant drugs (such as caffeine) 

and prohibiting work during periods of low circadian activity.  External motivation has 

also been found to be effective in combating sleep deprivation (Matthews et al., 2000). 

Sleep periods for sailors can be irregular and disrupted, with watchstanders 

obtaining less sleep and more broken periods of sleep (Miller et al., 1998).  For assessing 

sleep in most field settings, such as US Navy warships, PSG is not feasible.  Actigraphs 

have been found to be cost effective in measuring “longitudinal, natural assessments of 

sleep-wake patterns” (Sadeh, et al., 1995, p. 300).   

C. MOTION 
There is a dearth of information on the effects of motion on sleep.  Results seem 

to indicate that sleep is not significantly affected by motion.  In a preliminary study of 

ship motion and fatigue onboard the SWIFT, however, motion was reported by the 

subjects as the fourth largest factor causing sleep deprivation (McCauley et al., 2004).  

This finding underlines the importance of quantifying the effects of motion upon sleep, 

especially with the unconventional hull designs being fielded by the US Navy. 

As can be seen in Figure 5, SWIFT is a catamaran.  Catamarans are sometimes 

uncomfortable in high sea states, having quick, stiff rolls.  When traveling at low speeds, 

catamarans have a “corkscrew” effect (O’Neil, 2003).  This is different from a 
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conventionally hulled ship where motion is in more of a rolling pattern that can be better 

anticipated and corrected for (e.g., grabbing onto a handrail).    

 
Figure 5.   HSV2 SWIFT (From: High Speed Vessel SWIFT Joins Navy, 2003) 

 

O’Hanlon et al. (1977) conducted a study measuring the effects of motion on 

sleep, among other variables, utilizing a trainer that replicated the motions of a Surface 

Effects Ship (SES).  An SES rides on a cushion of fan created air held inside skirts or 

seals (O’Neil, 2003).  When subjects were exposed to motion conditions, researchers 

discovered significant decreases in absolute time spent in sleep Stage 1 and the number of 

sleep stage changes.  Additionally, sleep cycle length was significantly greater in the 

motion condition.  At least two subjects were wakened by motion sickness.  The 

investigators also looked at the effect of motion on circadian cycles as measured by body 

temperature.  They found no significant differences in body temperatures between static 

and motion conditions that indicated a change in circadian cycles. The researchers 

concluded that generally, motion does not affect sleep, with the exception of personnel 

wakened by motion sickness. 

While an SES may have motion characteristics unlike those of the SWIFT, both 

ship types utilize unconventional hull designs being used in modern navies and have 

much smaller crew sizes than those found on traditional warships.  It is, therefore, 

important to quantify the effects of motion on sleep in order to understand their impact on 

these reduced sized crews and add to the sparse body of literature which currently exists.   
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D. TEMPERATURE AND HUMIDITY 
1. Introduction 
Unlike motion, sleep is affected by temperature and humidity (Libert et al., 1988; 

Haskell, Palca, Walker, Berger & Heller, 1981; Okamoto-Mizuno, Tsuzuki, Mizuno & 

Iwaki, 2005; Dewasmes, Telliez & Muzet, 2000).  Additionally, adaptation to heat does 

not lead to increased sleep quality (Johnson & Kubrick, 2001; Libert et al., 1988).   

Results from a preliminary study of fatigue and motion onboard SWIFT indicate 

that heat, cold and humidity caused over 50% of participants disrupted episodes of sleep.  

Specifically: 

Heat: Twelve participants (63%) reported that heat interferes with their 
sleep. 

Cold: Eleven participants (58%) reported that cold interferes strongly or 
promotes strongly their sleep. This finding combined with the 
corresponding finding from heat, leads to the conclusion that there may be 
a problem with temperature in the berthing compartments. 

High humidity: Ten participants (52%) reported that high humidity 
interferes with their sleep, five (26%) of whom, reported strong 
interference.  (McCauley et al., 2004) 

These results highlight the importance of quantifying the effects of temperature 

on sleep for the crew of the SWIFT.  Due to SWIFT’s small crew size, any impact on the 

sleep of one individual will have a greater impact on crew effectiveness than would be 

found on a traditionally manned US Navy warship. 

2. Temperature and Sleep 
A human’s natural comfort zone sits between 22.8˚C (73.04˚F) and 26.1˚C 

(78.98˚F) in the summer and between 20˚C (68˚F) and 23.9˚C (75˚F) in the winter.  Less 

humidity is acceptable at higher temperatures than at lower temperatures (e.g., 60%RH at 

26.1˚C and 85%RH at 20˚C) (Wickens et al., 2004).  Heat also causes reduced sleep 

quality and affects sleep patterns.  In addition, allowing time for adaptation to heat does 

not decrease its effect upon sleep quality (Johnson & Kobrick, 2001). 

Libert et al. (1988) conducted a study during which six men had their sleep 

patterns monitored while being exposed to two temperatures, 20˚C and 35˚C.  
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Researchers observed that the participants exhibited less total sleep, more broken sleep 

patterns, increased wakefulness and shorter REM sleep periods at 35˚C. Researchers 

found the subject’s thermoregulation adapted to the change in heat conditions from 20˚C 

to 35˚C, but sleep patterns did not adapt.   

In a study conducted by Haskell et al. (1981), it was determined that cold was 

more disruptive to sleep than heat.  Figure 6 is a graphic representation of their findings.   

 
Figure 6.   Minutes of wakefulness, stage 1, stages 3+4 and REM sleep across 

ambient temperature (Ta) conditions for all subjects (From: Haskell, Palca, 
Walker, Berger & Heller, 1981, p. 496) 

It appears that ambient temperature of approximately 29˚C is optimal for 

maximizing REM, Stage 3 and Stage 4 sleep and minimizing Stage 1 sleep and 

wakefulness.   
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The apparent discrepancy between Libert et al. (1988) and Haskell et al. (1981) 

may be due to procedural differences.  In Libert et al. (1988), participants were exposed 

to higher heat conditions in the morning, well before the defined sleep period, and were 

in a controlled laboratory setting during the entire experiment.  Haskell et al. (1981), on 

the other hand, exposed participants to experimental conditions an hour and a half prior 

to their normal bedtime and allowed participants to go home between experiments.   

Dewasmes et al. (2000) measured the effects of temperature upon sleep after an 

eight hour exposure to either a baseline temperature of 24˚C or a higher temperature of 

28.5˚C, followed by 6 hours of sleep at baseline conditions, discovering that increasing 

air temperature between baseline and experimental conditions increased REM sleep 

percentage and duration.   

Okamoto-Mizuno et al. (2005) conducted two experiments in which they exposed 

participants to 26˚C RH 50% and 32˚C RH 80% in 3 hr 45min blocks (with a half hour 

transition between treatments).  In the first experiment participants were exposed to 26˚C 

RH 50%, then 32˚C RH 80%.  The investigators reported a decrease in sleep efficiency 

and an increase in wakefulness in the second treatment condition.  The second 

experiment reversed the order of treatments.  The researchers discovered an increase in 

wakefulness during both treatments and a decrease in slow wave sleep during the first 

treatment condition; stage one sleep increased during the treatment of higher heat / 

humidity and stage four sleep decreased.  They concluded that introduction to humid heat 

in the beginning of a sleep cycle can be more disruptive to sleep stage distribution than its 

introduction toward the end of a sleep cycle. 

3. Temperature Habitability Standards 
Individual thermal wellbeing is determined by multiple external and personal 

aspects, such as air temperature, mean radiant temperature, air velocity, relative humidity, 

personal activity and clothing (Guide for Crew Habitability on Ships, 2002).  The 

American Bureau of Shipping states a thermal environment should be acceptable to 80% 

of a space’s inhabitants. Figure 8 is a summary of the American Bureau of Shipping 

standards for indoor climates.  The American Bureau of Shipping assumes the occupants 

will be dressed in characteristic indoor clothing, engaged in light and sedentary work and 
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will remain in the space for longer than 20 minutes.  The HAB+ requirement in Figure 7 

is used to identify a space where crew comfort is considered, as in berthing spaces, 

bridge, engine control room, hospital and indoor workspaces (Guide for Crew 

Habitability on Ships, 2002). 

 

 
Figure 7.   American Bureau of Shipping Indoor Climate Requirements (From: Guide 

for Crew Habitability on Ships, 2002, p. 40) 
 

The Naval Sea Systems Command Shipboard Habitability Design Criteria Manual 

for air conditioning and heating states: 

Air Conditioning. All berthing, messing, medical, electronics, and 
necessary control spaces on surface ships shall be air conditioned to 
maintain as a maximum, 80 degrees Fahrenheit dry bulb [As from a 
standard thermometer] and 62.5 degrees Fahrenheit dew point under 
external ambient conditions up to 90 degrees Fahrenheit dry bulb and 81 
degrees Fahrenheit wet bulb [Wet bulb is an environmental index that is 
an approximation of air temperature, radiant heat and humidity (TLVs and 
BEIs, 2004)] and sea water temperature of 85 degrees Fahrenheit, with the 
personnel on board and normal machinery operating. 

Heating. The criterion for all surface ships and submarines shall be the 
capability to sustain space temperature of at least 65 degrees Fahrenheit 
dry bulb in all living, sanitary, messing, medical, control spaces, and 
normal working stations, in ambient external conditions as low as 10 
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degrees Fahrenheit dry bulb, and sea water temperature of 28 degrees 
Fahrenheit, with the personnel on board and normal machinery operating. 
(Naval Sea Systems Command [NAVSEA], 1995, pp. 3-4).   

4. Conclusion 
Temperature affects sleep (Libert et al., 1988; Haskell et al., 1981; Okamoto-

Mizuno et al., 2005; Dewasmes et al., 2000).  Results indicate that high temperatures 

(e.g., 35˚C) adversely impact sleep, while more moderate temperatures (e.g., 20˚C) 

enhance sleep (Libert et al., 1988).  Cold, however, has also been found to have more of a 

negative impact on sleep than heat (Haskell et al., 1981).  The apparent discrepancy 

between Libert et al. (1988) and Haskell et al. (1981) may be due to procedural 

differences.  High humidity in conjunction with high temperature has been found to 

adversely affect sleep (Okamoto-Mizuno et al., 2005).  Heat exposure prior to a sleep 

period may also negatively impact sleep (Dewasmes et al., 2000).  Finally, adaptation to 

heat does not affect the ability of the body to obtain adequate sleep in high temperature 

conditions (Johnson & Kubrick, 2001; Libert et al., 1988).   

Both the US Navy and private industry have established standards for temperature 

in berthing spaces (NAVSEA, 1995; Guide for Crew Habitability on Ships, 2002).  These 

standards require that temperature is adjustable within specific ranges under certain 

environmental conditions.   

Results from a preliminary study completed onboard SWIFT in May, 2004 

indicated that temperature and humidity cause disrupted sleep in the ship’s crew.  Due to 

SWIFT’s small crew size, any impact on the sleep of one individual will have a greater 

impact on crew effectiveness than would be found on a traditionally manned US Navy 

warship.  Additionally, the operating environments in which US Navy ships conduct 

missions (e.g., Arabian Gulf, Gulf of Oman, Horn of Africa, etc.) are often hot and humid 

places.  It is imperative that examination of the consequences of temperature on sleep be 

investigated.     
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E. NOISE 
1.  Introduction 
Everyday, sailors in the US Navy are exposed to high levels of noise, from flight 

decks to engineering spaces.  The US Navy considers the consequences of individual 

noise exposure in work settings, but the effects of noise on the sleep of sailors has not 

been well studied.  Like temperature, noise affects sleep (Thiessen, 1978; Suter, 1991; 

Berglund & Lindvall, 1995; Ohrstrom, 1995; Bonnet & Arand, 2000; Ohrstrom & 

Skanberg, 2004).  Heat, however, causes more disruption in sleep than noise (Libert et al, 

1991). 

Results from a preliminary study of sleep and motion onboard SWIFT indicate 

background and random noise caused 42% and 68% of participants disrupted episodes of 

sleep, respectfully (McCauley et al., 2004).  These findings highlight the importance of 

quantifying the effects of noise on US Navy warships, especially with the reduced 

manning levels of future vessel designs.   

2.  Sound Basics 
Sound is generated by a vibrating object and moves out through a medium, such 

as air (Matthews et al., 2000).  A human receiver then may hear this sound.    Humans 

can hear from 20hz to 20,000hz, with the greatest sensitivity around 4,000hz (Wickens et 

al., 2004).  The decibel (dB) is the unit of measurement for sound intensity and is 

measured on a logarithmic scale; an increase of 10dB almost doubles how loud a sound is 

perceived (Matthews et al., 2000).   

Sound is reported using several different scales.  The US Navy uses dB(A) and a 

time weighted average (TWA) of 8 hours as a baseline for frequencies from 20hz to 

16,000hz (Office of the Chief of Naval Operations, 2002).  The A-Weighted Scale is 

defined as “Weighting network that proximates the average human ear to sound” (Bolton 

& Johnson, 1999, p. 58).  The A-Weighted Scale is also defined as a filtered value of the 

sound level as the ear and brain perceives it (Amble et al., 1975).  The time weighted 

average evens out noise exposure over a period of time, exchanging intensity against 

duration (Wickens et al., 2004).  The TWA values are set with the assumption that the 

worker will be able to recover from the noise exposure away from the workplace.  If the 
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worksite is also the place where the worker sleeps and relaxes for durations greater than 

24 hours, the background noise in the spaces the worker is sleeping or relaxing in should 

not exceed 70dB  (TLVs and BEIs, 2004).  The US Navy sets exposure limits at 84 

dB(A) and 140 dB peak sound pressure level or greater as hazardous (Office of the Chief 

of Naval Operations, 2002).   

3.  Noise and Sleep 
Noise sometimes causes people to completely awaken during their rest cycle and 

can also result in a sleeper going from heavy to light sleep, decreasing deep stages and 

amount of REM sleep, increasing their body movements while sleeping and changing 

their heart rate (Suter, 1991).  The aspects of noise that can affect sleep are level, 

fluctuations, exposure number, type, time and informational content.  In addition, 

individual characteristics such as illness, age, noise sensitivity and variable sleep times 

can affect noise related sleep disturbances (Berglund & Lindvall, 1995).  Noise can also 

act as an arouser and cause prolonged sleep latency, but in times of severe sleep 

deprivation, noise may be overcome to allow sleep (Bonnet & Arand, 2000).  

Psychophysiological responses to noise exposure greater than 40dB(A) have been 

discovered in laboratory and real-life settings.  Heart rate, pulse and respiration rates have 

all been shown to increase, without habituation over time (Berglund & Lindvall, 1995).  

In a study measuring the effects of a white noise level of 93dB (+/- 2) on changes 

in sleep stages, researchers found that REM sleep decreased and stage 1 and stage 2 sleep 

increased (stage 1 sleep only increased modestly); stage 3 and stage 4 sleep were 

unaffected.  There was also a significant rise in the number of switches to wakefulness 

(Scott, 1972).  

An analysis of the level of noise events and participant sleep conducted by 

Ohrstrom (1995) concluded that increased levels of noise events resulted in more 

disrupted sleep, extended the time required to fall asleep and had higher incidence of 

body movements.  In addition, sleep quality decreased.  The results of three experimental 

groups are displayed in Figures 8 and 9. 
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Figure 8.   Sleep quality vs. number of noise events (From: Ohrstrom, 1995, p. 610) 
 

 
Figure 9.   Time to fall asleep vs. number of noise events (From: Ohrstrom, 1995, p. 

611) 
 

A study conducted by Ohrstrom and Skanberg (2004) studied the effects of traffic 

and ventilation noise on the sleep of subjects in laboratory and home settings.  They used 

actigraphs and questionnaires to assess sleep.  The researchers found that traffic noise 

caused a greater reduction in sleep quality than ventilation noise.  They did not find 

statistically significant differences between the results of sleep in the laboratory and 

home settings.  The researchers further concluded that the results from the actigraphs and 

questionnaires were contradictory; for example, the actigraphs reported better sleep 

quality when subjects were exposed to the ventilation noise than when they were exposed 

to a no-noise condition, while the questionnaires reported the opposite.  The investigators 

were inclined to accept the findings from the questionnaires because they all reported 

reduced sleep quality with exposure to noise.   

Griefahn (1990) developed a model for determining limits for noise disruptions 

during the night (Figure 10).  As can be observed, the greater the number of interruptions, 
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the lower the decibel level must be to obtain ‘no reactions’ from subjects.  This model 

may not be entirely accurate.  For example, Ohrstrom (1995) found 25% of subjects 

wakened when exposed to 32 noise events at 45dB(A) (the model shows an approximate 

54dB(A) level needed to awaken subjects after 32 noise events), indicating this model 

may be inaccurate for the entire population. 

 

 
 

Figure 10.   Limits for noise emission during the night.  Number of noises vs. 
maximum level (From: Griefahn, 1990, p. 1165). 

 

Ohrstrom (2000) detailed laboratory experiments conducted over several years. 

During one experiment, participants were exposed to 37 irregular noise levels with a 

maximum of 80dB(A) and a steady noise level of 51.4dB(LAeq).  In another experiment, 

participants received treatments of intermittent noise of 60dB(A) LAmax and 70dB(A) 

LAmax.  The results of these two experiments demonstrate, that intermittent noise causes 

more disruptions in sleep than steady levels of noise and that sleep quality decreased with 

exposure to higher LAmax noise levels.  In addition, the number of body movements 

increased with increased noise levels.  Participants during an additional experiment were 

exposed to 37 noise events with a LAmax of 60dB and placed into noise sensitive and 

non-noise sensitive groups.  Ohrstrom found that noise sensitive individuals were able to 

acclimatize themselves to the noise and obtained better sleep toward the end of the 
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experiment.  Non-noise sensitive participants, however, had poorer sleep at the end of the 

study when compared to the beginning. 

 
Figure 11.   a-c: Relation between number of noise events and (a) difficulties to fall 

asleep, (b) awakenings by noise and (c) perceived sleep quality (From: Ohrstrom, 
2000, p. 74) 

 

In three additional experiments, Ohrstrom was able to establish an association 

between the number of noise events and reported sleep quality, awakenings caused by 

noise and difficulties in falling asleep (Figure 11).  Figure 11 displays an important 
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finding: the number of noise events is more influential than the decibel level in disrupting 

subject’s sleep.   

Thiessen (1978) examined the affects of randomized traffic noise levels on the 

sleep of young (16-25 yrs. of age), middle aged (46-51 yrs. of age) and old (55-75 yrs. of 

age) participants.  He found that the sleep of young and old participants have nearly 

identical responses to noise.  Middle aged participants had a higher probability of both 

changes in sleep stage level and wakening than both young and old participants, being 

more sensitive by approximately 15dB(A).  These results are graphically displayed in 

Figures 12 and 13.   

 

 
Figure 12.   Probability of waking vs. peak noise level (From: Thiessen, 1978, p. 220) 
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Figure 13.   Probability of shift in sleep level vs. peak noise level (From: Thiessen, 

1978, p. 220) 
 

Thiessen also discovered that over a period of 24 days of traffic noise exposure, 

participants’ wakening responses steadily declined, suggesting adaptation or habituation.  

Figure 14 presents this graphically.  The upper line represents the number of sleep stage 

changes and the lower line represents the number of participant awakenings.   

 

 
Figure 14.   Days vs. numbers of awakenings (lower line) and number of sleep stage 

changes (upper line) (From: Thiessen, 1978, p. 219) 
 

From Thiessen’s results it appears that increased noise levels caused greater 

probabilities in both waking and sleep stage changes across all age groups, with middle 
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aged participants having greater sensitivity.  Additionally, acclimatization is seen in the 

number of awakenings, but not with the number of sleep stage changes over a long period 

of time.  This may indicate that noise still disrupts sleep in people who are considered 

acclimatized to its effects.   

In an analysis of heat and noise exposure, Libert et al. (1991) determined that 

these variables adversely affected sleep patterns.  Subjects were exposed to two heating 

conditions (20˚C and 35˚C), a constant background noise level of 45dB(A) and 

intermittent traffic sounds ranging in duration and intensity (79dB(A) to 86dB(A)).  At 

night, background noise levels were kept at 30dB(A) and peak events were reduced by 

15dB(A).  At night, total sleep time decreased and wakefulness, sleep state changes, stage 

one events, awakenings, and moves toward awakenings all increased.  When exposed to 

noise during the night, subjects experienced increased frequencies of sleep stage 

alterations, moves toward awakenings and stage one events.  When the researchers 

compared results from heat and noise exposure, they found that heat had a significant 

greater effect than noise upon sleep.  Researchers also found within nights exposed to 

disruptive heat and noise, there was no indication of adaptation to either; in fact, the latter 

part of the night displayed more disruption in sleep than the earlier parts.   

Berglund, Kihlman, Kropp  and Ohrstrom (2004) found a direct relationship 

between ambient noise levels and disrupted sleep in homes.  They also found that traffic 

noise causes psychosocial stress. In houses with sound levels of 63-68 db (LAeq, 24hr) 

people felt more tired, stressed, irritated and unsociable than those people whose homes 

had lower sound levels of 45db (LAeq, 24hr). 

Horne, Pankhurst, Reyner, Hume and Diamond (1994) measured the sleep of 400 

people living near four airports in Great Britain.  They found that only a few aircraft 

noises affected participant sleep and that other social and personal factors had a much 

larger influence on awakenings.  The investigators also discovered that males responded 

more often to aircraft noises than females.  Additionally, during the first and last hours of 

sleep, participants displayed less response to aircraft noises.   
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Fidell, Pearsons, Tabachnick and Howe (2000) conducted two studies at three 

airports that were receiving either a decrease or increase in air traffic.  They found that 

participant sleep was affected little by these changes.  The investigators also concluded 

that comparatively few noise events disrupted participant sleep and that they had adapted 

well to living near airports.   

Vallet, Gagneux, Blanchet, Favre and Labiale (1983) measured long term effects 

of exposure to traffic noise on participants living in areas of high traffic noise for a 

minimum of four years.  They compared the differences between sleeping in noisy and 

quiet areas of participants’ homes.  The investigators found that REM sleep was 

significantly higher in the quiet area than in the noisy area of the homes.  In addition, 

REM sleep latency was significantly lower in the quiet area.  Intervals of waking were 

lower in the quiet area, as well (p<.05, one tailed).  After analyzing noise levels, the 

investigators found that a mean of 50.3 dB(A) peak noise level caused awakenings, 

48.5dB(A) produced sleep stage changes, 47.6dB(A) resulted in transient reactions and 

37dB(A) caused changes in cardiac response.  Younger participants (<45 years of age) 

were found to be more sensitive than older participants to solitary noises resulting in 

transient events and sleep stage changes.   

The researchers also concluded there was no acclimatization to noise among the 

participants.  The differences in this finding with the results of Thiessen (1978) and Fidell 

et al. (2000) may be due to the setting of the experiment combined with the type of noise 

exposure.  Thiessen (1978) used a laboratory setting and recordings of traffic noise, while 

Fidel et al. (2000) examined aircraft noise exposure. 

4. Soundscape 
In residential settings there are noise soundscapes.  A soundscape is physically 

defined by noise source location (e.g., streets), barriers such as buildings and quiet areas.  

A perceived soundscape is the assessment of the individual toward the physical 

soundscape and is measured through subjective means (Berglund, et al., 2004).  Some 

homes have quiet areas located away from a noise source while some are fully exposed to 

noise.  Skanberg and Ohrstrom (2002) found greater reported annoyance to noise 

exposure among people who lives in homes without a quiet area. 
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Figure 15 displays the results of several studies that measured reported annoyance 

in areas with access to a quiet area (noise/quiet) and without access (noise).  There is 

clearly more subjective annoyance in those areas without access to a quiet side (Kihlman, 

2002).    

 
Figure 15.   Subject annoyance with noise exposure in locations with access to a quiet 

side and those without (From: Kihlman, 2002, p. 3) 
 

5. Noise Standards 
In a report prepared for the World Health Organization in 1995, researchers 

recommended a continuous sound pressure level of no more than 30-35dB indoors, a 

maximum of 45dB(LAmax) for intermittent noise exposure and decreasing the number of 

noise events.  In addition, even if noise intrusions are below 45dB(LAmax), 

consideration needs to be given to settings with low background levels, sites where 

mixtures of vibration and noise are present and locales containing low frequency noises.  

The researchers also suggested reducing noise intrusions in the beginning of a sleep 

period, and concentrating on reducing the number and intensity of random noise events 

before decreasing the level of constant sound (Berglund & Lindvall, 1995).  

According to the American Bureau of Shipping, the maximum acceptable noise 

level of cabins, staterooms, and berthing spaces is 50 dB(A) (LAeq).  The American 

Bureau of Shipping established this level to improve comfort, communication and 
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performance of the crew.  Comfort is defined as “the ability of the crew to use a space for 

its intended purpose with minimal interference or annoyance from noise”.  It assumes the 

occupants will remain in the space for longer than 20 minutes (Guide for Crew 

Habitability on Ships, 2002).   

The Naval Sea Systems Command Shipboard Habitability Design Criteria Manual 

states that acceptable “A” weighted airborne noise levels for berthing and living spaces 

are 70 dB(A) (NAVSEA, 1995).   

6. Conclusion 
As has been shown, noise affects sleep (Thiessen, 1978; Suter, 1991; Berglund & 

Lindvall, 1995; Ohrstrom, 1995; Bonnet & Arand, 2000; Ohrstrom & Skanberg, 2004).  

Psychosocial stress and psychophysiological responses have also been found with noise 

exposure (Berglund et al., 2004; Berglund & Lindvall, 1995).  

Intermittent noise causes more disruptions in sleep than background noise 

(Ohrstrom, 2000; Ohrstrom & Skanberg, 2004).  The greater the number of noise 

intrusions, the more sleep is disrupted, the lower the sleep quality and the lower the 

decibel level must be to not interrupt sleep (Ohrstrom, 1995; Griefahn, 1990).  In times of 

severe sleep deprivation, noise may be overcome to allow sleep (Bonnet & Arand, 2000). 

People can adapt to noise (Thiessen, 1978; Fidell et al., 2000).  Vallet et al. 

(1983), however, did not discover acclimatization among their participants.  The 

differences between the results of Vallet et al. (1983) and the results of Thiessen (1978) 

and Fidell et al. (2000) may be due to differences in both the types of noise used in the 

experiments and their experimental settings.   

There are recommended and required standards for noise (Berglund & Lindvall, 

1995; NAVSEA, 1995; Guide for Crew Habitability on Ships, 2002).  As is the case with 

temperature, it is important to quantify the operational noise range in berthing spaces to 

verify the implementation of these standards. 

The sleep of SWIFT’s crew is affected by noise (McCauley et al., 2004). This 

demonstrates the importance of understanding the factors that disrupt sleep on US Navy 

warships, especially with the reduced manning levels of future vessel designs.   
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F. LIGHT 
1.  Introduction 
Like temperature and noise, exposure to light affects sleep (Lewy, Wehr & 

Thomas, 1980; Czeisler et al., 1989; Boivin, Duffy, Kronauer & Czeisler, 1994; Cauter & 

Buxton, 2000; Duffy, Kronauer & Czeisler, 1996; Czeisler et al., 1989; Mitchell, Hoese, 

Liu, Fogg & Eastman, 1997).  Circadian rhythms can shift with exposure to light 

(Czeisler et al., 1989; Boivin, Duffy, Kronauer & Czeisler, 1994).  Social factors have 

minimal impact on circadian cycles, while the light and dark cycle is the primary driver 

of circadian variation (Duffy et al., 1996).  Time of exposure to bright light also 

determines the amount of phase shift in the circadian cycle (Cauter & Buxton, 2000; 

Duffy, et al., 1996; Czeisler et al., 1989; Mitchell, et al., 1997). 

A US Navy warship’s daily schedule determines when lighting in berthing spaces 

is either on or off.  Additionally, the brightest lights onboard may be in the bunk spaces 

(Hunt & Kelley, 1995).  These social and environmental determinants of light exposure 

in the berthing spaces may very well affect the sleep of the SWIFT’s crew and underline 

the importance of quantifying their effect. 

2.  Light and Melatonin 
Circadian rhythms are primarily regulated by light through stimulation of the 

suprachiasmatic nucleus (SCN) (Card & Moore, 1991).  Brainard et al. (2001) speculate 

that there appears to be a photopigment in the eye that regulates circadian reception to 

light.  Upon exposure to light, the retina signals the SCN, causing inhibition of release of 

melatonin by the pineal gland (National Institute of Neurological Disorders and Stroke, 

2005).  Melatonin is a naturally occurring hormone that induces sleep (Maas, 2001).  

Melatonin secretion is at its lowest point during the day, begins to increase at sunset and 

peaks around 0200 in young people and 0300 in elderly people (Dean, Morgenthaler & 

Fowkes, 1993).  Figure 16 displays this graphically.   
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Figure 16.   Melatonin release (From: Dean, Morgenthaler, Fowkes, 1993, p. 51) 

 
3. Light and Sleep 
A study by Lewy et al. (1980) found that bright light (1500 and 2500 lux) inhibits 

melatonin secretion in humans, but that low level light (500 lux) does not.  Czeisler et al. 

(1986) exposed a participant to a 27 hour day in a laboratory with four-hour treatments of 

light every evening.  During the treatment, the light level was kept between 7,000 and 

12,000 lux, the equivalent of normal light exposure at sunrise.  The investigators found a 

six hour phase shift in the participant’s circadian rhythms.  These results suggested that 

exposure to bright light can reset circadian cycles.   

In another related study, Czeisler et al. (1989) exposed participants to bright light 

(7,000 to 12,000 lux), background light (100 to 200 lux) and darkness (<0.02 lux) for a 

three day period.  The timing of the exposure to bright light varied: bright light exposure, 

followed by background lighting; background light with bright light exposure in the 

middle of normal background light period; background light exposure followed by bright 

light exposure.  This schedule created average circadian shifts of +3.6 hours, +8.6 hours 

and -5.9 hours, respectively.  These results led the researchers to conclude that the 

circadian clock is more sensitive to light than was previously thought.  The researchers 

also examined the same schedule without exposure to either background lighting or 

darkness during the times of bright light exposure in the other trials.  This created 

relatively small shifts in the circadian clocks, leading the investigators to conclude that 

bright light exposure was the driving factor in the circadian clock shifts.   
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Boivin et al. (1994) exposed two groups to five hours of either bright light 

(approximately 1,260 lux) or darkness (approximately 0.03 lux) scheduled 1.5 hours after 

an initial measure of body temperature minimum and 12 hours from the middle of the 

sleep period.  The 1,260 lux level was used to investigate the effects of relatively low 

light on circadian cycles.  Background lighting during the experiment was approximately 

10-15 lux.  The investigators found that the group exposed to bright light had a phase 

advance (+2.77 hours) in their circadian cycles and the group exposed to dim light had a 

phase delay (-1 hour).  Results showed either minor or no differences in the circadian 

phases between the background lighting and dim light conditions.  The one hour phase 

delay in the control group was attributed to the slightly longer than 24 hour duration of 

the normal circadian cycle.  The schedule for both groups was the same, leading 

investigators to conclude that light had a direct effect on circadian cycles.   

Mitchell et al. (1997) investigated the phase shifts of circadian rhythms after 

exposure to bright light before and after the body’s temperature cycle minimum point.  At 

the same time they shifted the normal sleep/darkness patterns of the subjects to nine 

hours before and after their normal sleep times (median 23:45 to 07:45), replacing it with 

an eight hour work schedule.  The investigators designed a 2x2 factorial experiment with 

bright light (facilitating/conflicting) and direction of sleep/darkness shift 

(delayed/advanced). Bright light was considered facilitating if it occurred in the same 

sequence as the sleep/darkness shift (e.g., delayed shift with bright light exposure before 

body temperature minimum) and conflicting if it followed an opposite sequence (e.g., 

delayed shift with bright light exposure after body temperature minimum).  Participants 

received 3 hours of bright light (5,000 lux) exposure each 8 hour shift timed to occur 

either 3 hours before or 3 hours after the minimum body temperature.  This was 

determined by previous studies to be 3 hours prior to the normal sleep period.  

Investigators concluded that facilitating bright light showed higher circadian phase shifts 

than conflicting bright light (7.7 hours vs. 2.6 hours) and that higher numbers of 

participants achieved greater phase shifts with facilitating bright light than with 

conflicting bright light (88% vs. 38%).   
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Duffy et al. (1996) discovered that social factors have minimal impact on 

circadian cycles, while the light and dark cycle is the primary driver of circadian 

variation.  Participants experienced two reversed programs of rest, sedentary activity and 

social contact while exposing them either to bright light (7,000 to 13,000 lux) or darkness 

(<0.03 lux).  Bright light exposure was timed for two groups (3 and 4) to produce phase 

advances and for two groups (1 and 2) to produce phase delays in circadian cycles.  In 

addition, groups 1 and 3 were exposed to darkness and considered control groups, while 

groups 2 and 4 were exposed to bright light.  Investigators found that circadian phase 

shift direction was found to be dependent upon the time of bright light exposure and was 

not correlated with social factors.  In addition, the circadian phase shift with the control 

groups was found to be explained by the somewhat greater than 24 hour circadian 

rhythms, while normalized differences in phase shifts for the groups exposed to bright 

light were statistically the same (5.75 hrs for advanced phase and 6.11 hrs for delayed 

phase), though in opposite directions.   

Cauter and Buxton (2000) examined the effects of exposure to dark/sleep pulses 

during different times of day on circadian rhythms.  Initially, all participants were placed 

in a reclining position and placed under a low light of approximately 35 lux.  On Day 2, 

the sleeping period was limited to 0200-0800.  On Day 3, participants were assigned to 

either a control group or three experimental groups.  The experimental groups were 

exposed to different periods of darkness (0900-1500 / 1400-2000 / 1900-0100) and 

encouraged to sleep.  The experimental group that experienced darkness from 0900-1500 

showed a nearly one hour difference (-77 +/- 10 minutes) in phase shift from the control 

group.  On day four the participants were again placed in a reclining position and placed 

under low light level (approximately 35 lux).   There were no significant differences in 

phase shift from day 3 to day 4. 

In a study conducted by Daurat et al. (1993), subjects were exposed to both bright 

light (approximately 2000-2500 lux) and dim light (approximately 150 lux).  The 

investigators found that bright light did not affect the circadian clock.  However, bright 

light did cause a delay (2-3 hours) in the requested bedtimes of four (of eight) subjects.  

In addition, bright light delayed the lowest amount of motor activity (as measured with 



36 

actiwatches) by two hours.  Alertness and performance were enhanced at night by 

exposure to bright light.  This led the researchers to conclude that bright light can 

overcome, alertness, to some degree.   

Clodore et al. (1990) studied the effects of exposure to bright light (2000 lux) and 

dim light (50 lux) between 0500 and 0700 on circadian rhythms and performance tests.   

They concluded that participants exposed to bright light displayed greater motor activity 

and performance speed (in 3 out of 5 tasks) than participants exposed to the dim light 

during the morning.  In addition, those exposed to bright light also showed heightened 

alertness earlier than individuals exposed to dim light.  Circadian shift was found to be 

advanced from baseline measures.   

Daurat, Aguirre, Foret and Benoit (1997) researched sleep recovery effects after 

either continuous exposure to bright light (between 1,000 and 2,000 lux) or a light and 

dark cycle, with light exposure <50 lux between 1800 and 0800 and 1500 to 2000 lux 

during the remaining hours.  The exposure was conducted during 36 hours of sleep 

deprivation.  They found that during two days of recovery, participants exposed to dim 

light showed slow wave sleep recovery during the first night, while participants exposed 

to bright light displayed equivalent levels of slow wave sleep during both recovery 

nights.   

Hunt and Kelley (1995) recorded the light levels onboard a submarine and found 

that light levels were too low to cause melatonin inhibition and that the brightest lights 

were the ones located in the bunk spaces.  Kelly, Gill, Hunt and Neri (1996) studied the 

affects of an eighteen-hour rotating schedule on submarine sailors.  Submariners are 

separated from those time cues caused by natural light and social factors that cause 

normalization of the circadian cycle, suggesting that circadian rhythms of submariners 

may be unique.  In their study, they found that even without these cues, submariners who 

followed the eighteen-hour cycle were able to obtain an overall average of seven hours of 

sleep measured with actigraphs and sleep logs.  However, the sleep took place 

predominantly in more than one period and sailors on the eighteen hour schedule slept 

more during the daytime than sailors on a normal twenty-four hour schedule, possibly 

indicating a shift in the normal circadian cycle.   
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4. Conclusion 
Light exposure affects sleep through the inhibition of melatonin secretion in 

humans (National Institute of Neurological Disorders and Stroke, 2005).  Bright light 

(e.g., 1500 and 2500 lux) inhibits melatonin secretion in humans, but low level light (e.g., 

500 lux) does not (Lewy et al., 1980).  Circadian rhythms can shift with exposure to light 

(Czeisler et al., 1989, 1994).  Social factors have minimal impact on circadian cycles, 

while the light and dark cycle is the primary driver of circadian variation (Duffy et al., 

1996).  Time of exposure to bright light also determines the amount of phase shift in the 

circadian cycle (Cauter & Buxton, 2000; Duffy et al., 1996; Czeisler et al., 1989; 

Mitchell et al., 1997).  Exposure to bright light enhances performance (Daurat et al., 

1993; Clodore et al., 1990).   

Due to the strong effect of light on sleep and the social structure that determines 

when sailors are exposed to light in berthing spaces, it is imperative that the effects of 

light exposure upon sleep in berthing spaces be investigated and quantified.   

G. EMERGING HULL FORMS 
1. Littoral Combat Ship (LCS) 
The Littoral Combat Ship (LCS) is one of the future frontline units being 

developed for the US Navy.  It will incorporate a hull design that is meant to go in fast 

(upwards of 40 kts) and bring the fight to the enemy close to shore (Ulrich & Edwards, 

2003). 

 

Figure 17.   Lockheed Martin concept photo for LCS (From: Program Executive 
Officer Ships, 2005a) 
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LCS will be a multi-mission ship capable of mobility, special operations force 

(SOF) deployment, intelligence, surveillance, reconnaissance (ISR), maritime interdiction 

operations (MIO), homeland defense, anti-terrorism force protection (ATFP), mine 

interdiction warfare (MIW), antisubmarine warfare (ASW) and surface warfare (SUW) 

(Hamilton & Landay, 2004).  LCS is being conceived as a modular ship with mission 

module packages consisting of hardware and personnel to supplement the core crew.  For 

example, if there is a need to sweep an area clear of mines, an MIW mission module 

would be loaded onto LCS; when that mission is over, that same ship could be loaded 

with another mission module, such as ASW, and used to hunt submarines (Ulrich & 

Edwards, 2003).  This mission module system gives the US Navy greater flexibility in 

securing the littoral and decreases the need for mission specific ships.  LCS will also 

incorporate the latest in information technology to operate in the future highly networked 

Navy, conceptualized in FORCEnet.  It will also use a high number of unmanned 

vehicles for everything from mine warfare to strikes on terrorist camps (Ulrich & 

Edwards, 2003). 

 
Figure 18.   General Dynamics concept photo for LCS (From: Program Executive 

Officer Ships, 2005b). 
 

LCS will incorporate a non-traditional hull type that will allow her increased 

operational speeds and a shallower draft.  Currently, two teams led by General Dynamics 

and Lockheed Martin have competing designs for the LCS.  Each team envisions a 

different type of hull design.  Lockheed Martin is building a semi-planing mono hull 

(Figure 17). She will have a length of 115 meters, beam of 13 meters and reach 45kts.  
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General Dynamics is designing a trimaran (Figure 18) with a length of 127 meters and 

beam of 30.4 meters that will reach speeds up to 46kts (Hamilton & Landay, 2004).   

According to its Interim Requirements Document (IRD), LCS has an objective 

and threshold of 15 and 75 personnel in the core crew, respectively (Littoral Combat 

Ship, 2003).  Threshold is defined as: “A minimum acceptable operational value below 

which the utility of the system becomes questionable” (Chairman of the Joint Chiefs of 

Staff, 2005, p. GL-15).   

Objective is defined as: 

The desired operational goal associated with a performance attribute, 
beyond which any gain in utility does not warrant additional expenditure. 
The objective value is an operationally significant increment above the 
threshold. An objective value may be the same as the threshold when an 
operationally significant increment above the threshold is not significant 
or useful (Chairman of the Joint Chiefs of Staff, 2005, 2005, p. GL-14).   

In May of 2004, Lockheed Martin and General Dynamics were awarded contract 

options for building two LCS ships.  Lockheed Martin was awarded a contract to build 

the first LCS, to be named USS FREEDOM, in December 2004 (Navy's First Littoral 

Combat Ship, 2005).  A keel laying ceremony was held for USS FREEDOM on June 3, 

2005 (Keel Laid, 2005).  

2. SWIFT  
To test and gain experience with innovative hull designs, the U.S. Navy 

contracted for and took possession of the High Speed Vessel SWIFT (HSV-2) August 15, 

2003 (Figure 19) (Ryan & Grimland, 2003).  The vessel is a catamaran with semiplaning 

wave piercing aluminum hulls built by Incat Australia.  
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Figure 19.   HSV2 SWIFT (From: High Speed Vessel SWIFT Joins Navy, 2003) 

 

She is 310 ft long, has a beam of 87.3ft (overall), weighs 1800 long tons (fully 

loaded) and can reach 42kts (O’Neil, 2003).  She has a crew of 40 and room for two MH-

60S helicopters, 250 Marines and can transport one M1A1 main battle tank (Ryan & 

Grimland, 2003).  She has two crews in four-month rotations, utilizing the blue/gold 

concept pioneered by the submarine community (High Speed Vessel SWIFT Joins Navy, 

2003).  

SWIFT is being used to test Sea Power 21 concepts, such as Sea Basing, and the 

use of LCS mission module packages (HSV SWIFT Demonstrates, 2004).  She has an 

extensive Command and Control, Communications, Computers and Intelligence (C4I) 

suite for her use in MIW and for potential use of Unmanned Vehicles, including 

Unmanned Aerial Vehicles (UAVs), Unmanned Surface Vehicles (USVs) and Unmanned 

Underwater Vehicles (UUVs). 

The SWIFT is also being tested for use in a myriad of mission roles including 

MIW Command and Control (C2), Medical Evacuation and Support, Amphibious 

Warfare and Riverine Operations.    For example, she was used in September 2003 in a 

logistical role in the 5th Fleet Area of Responsibility (AOR) (McKain, 2003).  She also 

trained during the West African Training Cruise-04 in riverine operations and small boat 

raids (High Speed Vessel SWIFT Joins Navy, 2003).  In December 2004, SWIFT took 

part in GOMEX 05-1.  GOMEX 05-1 was a mine warfare exercise that graduated mine
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countermeasures squadron staff and ships to deployment ready status.  SWIFT was used 

as the mine countermeasures command flagship and coordinated the movements of the 

other participants in the exercise (Naval Support Activity-Panama City, 2005).   



42 

 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 



43 

III. METHODS 

A. OVERVIEW 
The objectives of this thesis were to examine the effects of noise, temperature, 

humidity, motion and light on the sleep patterns of the crew of the HSV-2 SWIFT and to 

measure crew effectiveness.  Data were gathered continuously from the time SWIFT was 

underway on December 3, 2004 until she pulled in on December 11, 2004.   

This section discusses the methodology used in gathering the data for answering 

the objectives of this study.  Section B describes the participants who volunteered for this 

observational study.  Section C shows the equipment used to gather the data.  Finally, 

Section D explains the procedure. 

B. PARTICIPANTS 
This study observed sailors onboard one of the US military’s high speed vessels 

in order to capture data from a crew operating onboard a non-conventional hull form.  

Participants in this study were officers and enlisted sailors of HSV-2 SWIFT.  Three of 

the participants were officers.  Of the enlisted sailors, two ranked E7 and above and 

fifteen were E6 and below, for a total of 21 out of a crew of 41.  Two participants were 

female, one officer and one enlisted sailor.  The female sailors slept in the same berthing 

area, regardless of rank.  Enlisted sailors slept primarily on the PORT side of the ship, 

while Officers slept on the STBD side.  Figure 20 displays the locations of the Berthing 

spaces.  Participants 4, 5, 14, 16, 19 and 20 slept in Berthing 5.  Participants 1, 6, 8-10 

and 13 slept in Berthing 6.  Participants 11, 18 and 21 slept in Berthing 7.  Participants 7 

and 15 slept in Berthing CPO2.  Participant 12 slept in Berthing 9.  Participants 2 and 3 

slept in Female Berthing.  Participant 17 slept in XO’s Berthing.  Table 1 summarizes 

this information along with age, height, weight and number of years at sea experience for 

each participant. 
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Table 1. Participant Demographics. 
 
Participant Rank Gender Age Height Weight

(lbs.) 
Sea time 
(years) 

Berthing 

1 E-6 M 28 6' 2" 240 4 6 
2 E-5 F 27 5' 5" 162 3 Female 
3 E-6 F 25 6' 5" 150 1.6 Female 
4 E-6 M 38 7' 2" 210 7 5 
5 E-6 M 36 5' 8" 192 4 5 
6 E-6 M 30 5' 10" 194 5 6 
7 E-7 M 38 5' 10" 220 10 CPO 2 
8 E-6 M 35 5' 10" 215 8 6 
9 E-6 M 35 5' 10" 190 12 6 
10 E-5 M 27 5' 10" 180 2 6 
11 E-5 M 22 5' 10" 170 2 7 
12 0-2 M 24 6' 1" 185 2 9 
13 E-6 M 44 6' 0" 240 8 6 
14 E-6 M 34 5' 9" 215 8 5 
15 E-8 M 37 5' 11" 200 13 CPO 2 
16 E-5 M 27 5' 4" 135 4 5 
17 04 M 38 6' 0" 235 10 XO 
18 E-6 M 35 5' 6" 173 3.5 7 
19 E-6 M 35 5' 11" 206 11 5 
20 E-4 M 21 5' 5" 165 1.2 5 
21 E-6 M 36 5' 11" 210 10 7 
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CPO 2
Berthing 5Berthing 6Berthing 7

Berthing 9 Female Berthing XO’s Berthing  
 

Figure 20.   Berthing spaces where personnel slept (After: Morrison, 2004) 
 

C.  INSTRUMENTS                 
1. Noise  
Five Quest Model Q300 Noise Dosimeters were used in this study.  They were 

obtained from Mr. Mike Tianen and Ms. Elvie Danque of Naval Hospital Camp 

Pendleton, Port Hueneme, CA.  Figure 21 displays a Quest Q300 and highlights 

important information about the Q300.  Table 2 contains information about the specific 

noise dosimeters used and where onboard SWIFT they were placed.   

 

 

 

 

 

 



46 

 

 

 

 

 

 

  

  

 

 

 

 

 

 

Figure 21.   Quest 300 Noise Dosimeter (After: Instructions for Q300, 1997, p. 41) 
 

Table 2. Noise dosimeter equipment details. 
Equipment Port Hueneme 

Serial Numbers 
Quest 

Technologies 
Serial 

Numbers  

Location 

Dosimeter 66099M1782 QC0050028 Berthing 5 
Dosimeter 66099M1817 QC0050022 Berthing 6 
Dosimeter 66099M1818 QC0050003 Berthing 7 
Dosimeter 66099M2004 QCA030109 Berthing CPO 2 
Dosimeter 66099M2005 QCA030111 Berthing 9 
Calibrator 66099M1843 QI9010056 N/A 

 

The Q300 is programmed to allow three separate noise dosimeters within one 

(Instructions for Q300, 1997).  Table 3 displays the settings programmed into the Q300s 

for this study.  An overall range of 40dB -110dB was selected to focus on the constant 

and intermittent noises that could cause interruptions in the participant’s sleep.  

Dosimeter 1 (within each Q300) was set to current US Navy, Department of Defense 

(DOD), standards.  It was intended to measure events that occur above 80dB.  Dosimeter 

Characteristics: 
1. Measuring Ranges:  

a. 40-110db 
b. 70-140db 

      2.   Battery:  
       a.   9 volt 

      b.   48 hours of operation. 
3. Temperature 

a. Operating: -10C to +50C 
b. Storage: -20C to +60C 

4. Humidity 
a. 0 to 95% non-condensing 

5. Size 
a. 5.5 x 2.8 x 1.4 inches 

6. Weight 
a. 15.5 ounces 

7. Components 
a. Microphone with cable. 
b. Meter 
c. Download cable 
d. Calibrator
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2 was set to International Electrotechnical Commission (IEC), proposed DOD standards; 

it was also set to measure events occurring above 80dB.   Dosimeter 3 was set to the IEC, 

proposed DOD standards, with the exception of the threshold of 0dB to capture events 

that occur below 80dB (Quest Noise Dosimeter Setup, 2004). 

Table 3. Settings for Q300  

 
 

The Q300 noise dosimeters are enclosed within a diecast aluminum case that 

safeguards them both physically and from electrical interference, such as that received 

from radios (Instructions for Q300, 1997).  Figures 22 and 23 display pictures of one of 

the Q300s used in the study and the cable used to download information to a computer.  

Instrument Range: 40 - 110 dB 
  

Measuring Parameters: 
 
 DOSIMETER 1 
 Criterion: 84 dB 
 ExchangeRate: 4 dB 
 Threshold: 80 dB 
 UpperLimit: 130 dB 
 Weighting: A 
 
 TimeConstant: Slow 
 
 DOSIMETER 2 
 Criterion: 85 dB 
 ExchangeRate: 3 dB 
 Threshold: 80 dB 
 UpperLimit: 131 dB 
 Weighting: A 
 
 TimeConstant: Slow 
 
 DOSIMETER 3 
 Criterion: 85 dB 
 ExchangeRate: 3 dB 
 Threshold: 0 dB 
 UpperLimit: 131 dB 
 Weighting: A 
 
 TimeConstant: Slow 
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To download data to a computer, the microphone is removed from the top of the Q300 

and the noise dosimeter connection side of the cable is placed onto the connection on top 

of the Q300.  The serial portion of the download cable is then placed into the computer 

where it can be retrieved using QuestSuite Professional Software. 

 
Figure 22.   Q300 Noise Dosimeter 

 

 
Figure 23.   Q300 Noise Dosimeter Download Cable 

 

Figure 24 is a graphical display of noise measurements obtained in Berthing 5 on 

10DEC04.  LAVG is the average db level of sound measured within a specified period of 

time, one minute for this study.  LEQ (equivalent sound level) is LAVG utilizing a 3dB 

Computer 
Serial 
Connection 

Noise 
Dosimeter 
Connection  

Microphone 
and Cable 
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exchange rate.  An exchange rate (this study used 3dB and 4dB exchange rates) refers to 

the change in the amount of noise (dB) that will either double or halve the dose 

accumulation rate.  For example, an employee who is allowed to work in an area 

averaging 84dB every 8 hours would only be able to work for four hours if the noise level 

was 87dB.  Slow Max and Fast Max refer to the maximum dB level measured with Slow 

or Fast response rates, 1 second and 0.125 second, respectively.  The response rate 

determines how quickly the unit responds to fluctuating noise.  LPEAK refers to the 

maximum dB level measured within a period of time.  LPEAK measurements are 

independent of response rate and weighting noise dosimeter settings.  Noise dosimeters 

for this study were set to the A weighting scale.  The A weighting scale approximates 

human hearing (QuestSuite Professional Software, 2002). 

 

 
Figure 24.   Q300 Output 
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2. Temperature and Humidity  

 
Figure 25.   Testo 175H1 (From: Compact data logger, n.d.) 

 

The Testo 175H1’s were used to measure temperature and humidity in five 

berthing spaces (Table 4).  Testo 175H1 specifications are highlighted in Figure 25.  The 

Testo 175H1 measures both temperature, from +14F (-10C) to +122F (+50C), and 

humidity, from 0% to 100% RH. Table 4 contains information about the specific Testo 

175H1s used and where onboard SWIFT they were placed.   
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Table 4. Testo 175 H1 equipment details  
 

 

 

 

 

 

 
  

 

 
Figure 26.   Testo 175H1 components (From: Compact data logger, n.d.) 

 

Figure 26 displays the components of the 175H1.  The data logger is placed inside 

the reader which downloads the temperature and humidity data through the serial cable to 

a computer.  Figure 27 presents the graphical output of temperature (in green) and 

humidity readings (in red) measured in Berthing 5 on December 10, 2004.  Percentage of 

Relative Humidity (%RH) is read on the left and degrees in Fahrenheit on the right.   

 

Equipment Serial Number Location 

Data logger 20018789/309 5 

Data logger 20014391/306 6 

Data logger 20035236/406 7 

Data logger 20035220/406 9 

Data logger 20035239/406 CPO 2 

Reader 

Serial 
CableData 

Logger 
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• Weight: 16 grams  
• Size: 28 x 27 x 10 mm*  
• Non-Volatile Memory: 64 

kbytes  
• Recording Time at one 

minute sample interval:15 
days  

• Lux Range: 0.1 to 
150,000  

• Battery Life: 180 days  

12/9/2004
16:00:00 PM

12/9/2004
20:00:00 PM

12/10/2004
0:00:00 AM

12/10/2004
4:00:00 AM

12/10/2004
8:00:00 AM

12/10/2004
12:00:00 PM

40

50

60

70

80

%rH

70

75

°F

testo 175-H1 C:1 [%rH] Channel 1

testo 175-H1 C:2 [°F] Channel 2

 
Figure 27.   Testo 175H1 Output 

 
3.  Light 

 

 

 

 

 

 

 

 

Figure 28.   Mini Mitter Actiwatch-L (From: AW-L Actigraph, 2005) 
 

Light was measured in Berthing 5 and Berthing 6, using two Mini Mitter 

Actiwatch-L’s.  The Actiwatch-L utilizes a  photodiode whose spectral sensitivity 

approximates that of a human (Actiwatch Instruction Manual, 2002).  Figure 28 displays 

an Actiwatch-L and its basic information.  Table 5 refers to the light measuring 

performance of the Actiwatch-L.  
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Table 5. Light measuring performance of the Actiwatch-L (From: Actiwatch 
Instruction Manual, 2002, p. 4-1) 

 

Figure 29 is a picture of the data output of the Mini Mitter Actiware software 

Version 3.4 used to analyze the light data.  Light data is pictured in Figure 29 as yellow 

bars.  Light is measured and displayed as units of lux; as the level of lux increases, the 

bar raises higher.  A lux is defined as “a unit of illumination from a source of one-foot-

candle intensity at a distance of one meter” (Actiwatch Instruction Manual, 2002, p. 4-3). 

 
 

Figure 29.   Actiware Light Analysis (From: Actiwatch Instruction Manual, 2002, p. 4-
3) 
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THURSDAY FRIDAY SATURDAY 

09 DEC 2004 10 DEC 2004 11 DEC 2004 

Morning Afternoon Morning Afternoon Morning Afternoon 

  

 

 

 

 

 

 

 

 

 

 

 

 

FRONTAL PASSAGE TONIGHT   

Wind (kts) Wind (kts) Wind (kts) 

SE  

13-17  

S TO SW  

13 – 17 W/ 
GUSTS TO 24 

KTS 

NW  

20 - 25 KTS 

NW 20 – 25 
GUSTS TO 28-

33 KTS 

NW TO N 20-25 
W/ GUSTS TO 

35 KTS 

NW TO N 20-25 
W/ GUSTS TO  

35 KTS 

Visibility (nm) Visibility (nm) Visibility (nm) 

UNR  6 HZ & 1-3 MI 
IN PRECIP UNR UNR UNR UNR 

Sea State / Sigwave Sea State / Sigwave Sea State / Sigwave 

3 / 4 – 5FT 4 / 5 - 6FT 4/ 5 - 7FT 4 / 5 - 7FT 4 / 5 - 7FT 4 / 5 - 7FT 

Temperature (F) Temperature (F) Temperature (F) 

Max Min Max Min Max Min 

74 64 75 64 60 45 

  

4. Motion  and Weather 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30.   Forecast for December 9, 2004 (From: Warner, 2004) 
 

Ship motion accelerometers were not activated for this phase of the study, but 

wave height and weather data were obtained for each day to approximate ship motion.  

An aerographer’s mate first class petty officer from Atlantic Meteorology and 

Oceanography Facility Jacksonville, Florida (NLMOF) rode the SWIFT during GOMEX 

05-1 and provided weather briefs each night.  An example is displayed in Figure 30 

above.  It shows a deterioration in weather that occurred from the afternoon of Thursday, 

December 9, 2004, until SWIFT pulled in on the Saturday, December 11, 2004.  Sea state 

was the variable used from the weather reports to investigate ship motion effects upon 

sleep.  Table 6 displays the factors that define a particular level of sea state.   
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Table 6. Sea State (From: Sea State Table, 2005) 
Wind 
Speed 
(Kts) 

Sea 
State 

Significant 
Wave (Ft) 

Significant Range 
of Periods (Sec) 

Average 
Period (Sec) 

Average Length 
of Waves (FT) 

3 0 <.5 <.5 - 1 0.5 1.5 
4 0 <.5 .5 - 1 1 2 
5 1 0.5 1 - 2.5 1.5 9.5 
7 1 1 1 - 3.5 2 13 
8 1 1 1 - 4 2 16 
9 2 1.5 1.5 - 4 2.5 20 
10 2 2 1.5 - 5 3 26 
11 2.5 2.5 1.5 - 5.5 3 33 
13 2.5 3 2 - 6 3.5 39.5 
14 3 3.5 2 - 6.5 3.5 46 
15 3 4 2 - 7 4 52.5 
16 3.5 4.5 2.5 - 7 4 59 
17 3.5 5 2.5 - 7.5 4.5 65.5 
18 4 6 2.5 - 8.5 5 79 
19 4 7 3 - 9 5 92 
20 4 7.5 3 - 9.5 5.5 99 

 

Motion data was also collected from Sunday, December 5, 2004 until Saturday, 

December 11, 2004 using an Actiwatch-L placed on the PORT side of the messdecks.  

Mini Mitter Actiwatches contain an accelerometer that measures the rate and amount of 

motion omni-directionally with a sensitivity of 0.01g.  The accelerometer creates an 

electrical current in proportion to the magnitude of the motion and saves the information 

as activity counts within the defined time period, set at 1 minute for this study.  The 

actiwatch is most sensitive to movement perpendicular to itself, making it ideal to sense 

motion created by a moving arm.  The actiwatch samples motion 32 times per second.  

The highest movement value for that second is then added to other values determined 

within a defined epoch.  The raw number is then applied against a calibration constant 

and displayed to the user (Actiwatch Instruction Manual, 2002).   

Specifically, the Actiwatch Data Acquisition algorithm senses and categorizes 

motion by: 
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1. The piezo-electric sensor generates a voltage when it undergoes a 
change in acceleration. 
2. Thirty-two (32) times per second, the filtered, amplified voltage from 
the piezo-electric sensor is converted to a digital value, is used to adjust a 
running baseline value, and is compared to the baseline value. 
3. Every second, the maximum deviation from the baseline for that 
second is determined, and added to an accumulated activity value. 
4. At the end of each epoch, the accumulated activity value is 
compressed into an 8-bit value and stored in Actiwatch memory. 
5. When the data are downloaded by the Windows software, the 8-bit 
values are decompressed to 15-bit raw activity counts. 
6. The Actiwatch-specific calibration constant is applied to the raw 
activity counts, resulting in calibrated activity data that are displayed to 
the user in the Windows software and recorded in .awd files for later use 
(Actiwatch Activity Data, n.d.). 

 

Activity counts are then displayed in the Actigraph Software.  Mini Mitter 

Actiware software Version 3.4 was used for this study.  Information from the actiwatches 

was downloaded into Actiware software using a Mini Mitter ActiReader, displayed in 

Figure 31.  The Actiwatch is placed face down on the reader and the information is 

downloaded through an RS-232 cable to the computer running the Actiware Software.  

The computer used for this study was a Dell Inspiron 8200. 

 
Figure 31.   Mini Mitter Actireader (From: Actiwatch Software, ActiReader, 2005) 

 
5. Sleep 
21 of SWIFT’s crew wore Actiwatch-L’s and Actiwatch-64’s to measure the 

amount of sleep they received during GOMEX.  Actiwatch-L’s are described in the 

preceding two sections.  Actiwatch-64’s are similar to Actiwatch-L’s with the exception 

that they are not capable of reading light and can record for a longer period of time (45 
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• Weight: 16 grams  
• Size: 28 x 27 x 10 mm*  
• Non-Volatile Memory:  

o AW-64 = 64 kbytes  
• Recording Time at one minute 

sample interval:  
o AW-64 = 45 days  

• Battery Life: 180 days  
• Waterproof to IEC Standard 

60529 IPX7 (water tight to a 
depth of one meter for 30 
minutes)

days vice 15 for the Actiwatch-L).  Also, they contain an event marker that can be 

pressed by the participant to denote an event such as the beginning of a nap (AW-16 & 

AW-64, 2005).  Figure 32 displays an Actiwatch-64. 

 

 

 

 

 

 

 

 

 

 

Figure 32.   Mini Mitter Actiwatch 64 (From: AW-16 & AW-64, 2005) 
 

Mini Mitter actiwatches were selected due to their size and relative high rate of 

survivability.  The Mini Mitter actiwatch uses a digital integration technique that has 

been found by investigators to be more sensitive to human movements than other types of 

actigraphs.  This is due to the fact that unlike other actigraphs, Mini Mitter actiwatches 

take into account the strength of a movement.   In digital integration, activity is sampled 

several times a second and then averaged within a defined epoch (Gomy & Allen, 1999).   

The software used to analyze the data obtained from the Mini Mitter Actiwatch-

L’s and Actiwatch 64’s was Mini Mitter Actiware Sleep version 3.4.  As described in the 

preceding section, the Actiwatch data is downloaded through the Mini Mitter Actireader 

to the computer and displayed using the Actiware software.   

The Actiware software allows the user to view  either a summary of the entire 

time the Actiwatch was measuring data (within the Actogram portion of the software) or 

two days (within the Sleep Analysis portion of the software).  The software also allows a 

user to analyze a section of the measured data (such as the blue highlighted area in Figure 

33). 

Event 
Marker 
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Figure 33.   Mini Mitter Actiware Software 3.4 Sleep Analysis (From: Actiwatch 

Software, Actiware-Sleep 2005). 
 

Each subject’s sleep period was analyzed using the Actiware Software Sleep 

Analysis section.  The scale setting in the  Sleep Analysis section was set to 200.  

Actiware-Sleep 3.4 also allows the user to analyze the subject’s data for naps using the 

Nap Analysis section.  Nap analysis for this study used the following settings: Minimum 

Nap 15, Maximum Nap 180 and Sensitivity 35.   

D. PROCEDURE 
Noise data were gathered in five berthing spaces using Quest Q300 noise 

dosimeters.  Temperature and humidity information was gathered using five Testo 175H1 

temperature and humidity monitors.  Light information was obtained in two berthing 

spaces using Mini Mitter Actiwatch-L’s.  Ship motion accelerometers were not activated 

for this phase of the study, although wave height and weather data were obtained for each 

day to approximate ship motion.   Additionally, an Actiwatch-L was placed on the PORT 

side of the messdecks to provide another indicator of ship motion.  Sleep information was 

gathered from 21 sailors of the HSV-2 SWIFT blue crew using Mini Mitter Actiwatch-

L’s and Actiwatch-64’s, worn on their non-dominant hand.  All instruments were 

programmed for one minute epochs and set for Greenwich Mean Time.  The Quest 

Q300’s, Testo 175H1’s and Actiwatch-L’s (measuring light in berthing spaces) were 

placed on top of lockers (Figure 34) in the berthing areas; this allowed for a location that 

was out of the way of the crew’s daily activities, but that still permitted access to the 
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desired information.  Figure 35 displays the berthing areas in which the measuring 

equipment was placed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 34.   Equipment location 

 
 

Actiwatch-L

Quest Q300 

Testo 175H1
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CPO 2
Berthing 5Berthing 6Berthing 7

Berthing 9 

Mess Decks PORT side

 
Figure 35.   Spaces where measuring equipment were located (After: Morrison, 2004) 

 

Data were gathered during Gulf of Mexico Exercise (GOMEX) 05-1, conducted 

in the vicinity of Naval Surface Warfare Center (NSWC) Panama City, FL, December 

2004.  GOMEX 05-1 was a mine warfare exercise that graduated mine countermeasures 

squadron staff and ships to deployment ready status.  GOMEX 05-1 included air, surface 

and explosive ordnance disposal (EOD) assets. SWIFT was used as the mine 

countermeasures command flagship and coordinated the movements of the other 

participants in the exercise (Naval Support Activity, 2005).   

On December 3, 2004, the day SWIFT was underway for GOMEX, two Human 

Systems Integration (HSI) students from the Naval Postgraduate School (NPS) gathered 

the participants on the Mess Decks to explain the reason and procedures for the study, 

distributed Internal Review Board (IRB) consensus forms and issued Mini Mitter 

Actiwatches.  In addition, participants were asked to fill out a Pre-Emarkation Survey 

that asked for demographic and historic information regarding fatigue and motion 

onboard SWIFT. 
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Participants were asked to wear the Actiwatches continuously for the duration of 

the study and were given two sets of questionnaires to fill out.  One questionnaire, the 

Environmental Questionnaire, asked participants to list the environmental factors that 

affected their sleep for each sleep period.  The Questionnaire Survey and Sleep Log 

asked participants daily questions of motion and fatigue and to log their sleep and wake 

times.   

One participant dropped out of the study after two days.  One participant did not 

return his actiwatch. One participant’s actiwatch failed.  Two participants removed their 

actiwatches when they slept.  Three participants stopped wearing their actiwatches before 

the end of the study.  Eleven participants returned Environmental Questionnaires.  Fifteen 

participants returned Questionnaire Survey and Sleep Logs.   

Each day, after Executive Officer’s inspection of messing and berthing 

(approximately 1000 local time), data was downloaded from each noise dosimeter using 

QuestSuite Professional software to a Dell Inspiron 8200 laptop.  Batteries were also 

changed in the noise dosimeters.  Additionally, data from the Testo 175H1 temperature 

and humidity monitors were downloaded using Testo Comsoft Basic software to the 

laptop.  The other equipment did not require daily downloads.   In the berthing spaces, 

temperature controls were set and locked and dehumidifiers were installed and running. 
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IV. RESULTS 

A. INTRODUCTION 
Sleep efficiency and average participant sleep were evaluated and are presented 

graphically.  Sleep efficiency is defined as “an index of the amount of time in bed that is 

actually spent sleeping” (Actiwatch Instruction Manual, 2002, p. A-6).  The value of 

sleep efficiency was determined by Mini Mitter Actiware Software Version 3.4 for a 

participant’s sleep period.  The values for average sleep are derived from the values of 

actual sleep calculated by Mini Mitter Actiware Software Version 3.4 for a participant’s 

sleep period.  Actual sleep is the amount of time scored by the Mini Mitter Actiware 

Software as sleep during a participant’s sleep period (Actiwatch Instruction Manual, 

2002, p. A-5).  After the first day at sea, the participants in this study appeared to 

acclimatize to their at-sea schedule, averaging between 6 and 7 hours of sleep per day for 

the remainder of the exercise.  Sleep efficiency was nearly constant throughout the 

exercise, averaging 78.86%, varying among participants between a low of 76.77% and a 

high of 81.68%.   

Analysis was also conducted with demographic data.  Average values of the 

environmental variables measured while the participants slept were also included in the 

analysis to examine possible relationships between the demographic and dependent 

variables.  The five dependent variables examined during this analysis were the total 

sleep a participant received during the study, each participant’s average sleep efficiency, 

the average amount of time each day a participant slept, the average amount of sleep 

periods per day and the average length of a participant’s sleep period.  Because the 

sample sizes were very small, the relationship between variables was studied by looking 

only at pairwise linear dependence via Pearson’s test for correlation.  Sea time was found 

to be highly correlated with the average amount of sleep a participant received during 

GOMEX 05-1 (p-value = .001 with sample correlation of -.778).  For this particular data, 

the estimated average change in sleep is a drop of 11 minutes per year of sea time.  Light 

was also found in this analysis to have a significant impact on participant sleep efficiency 

(p-value = .304 with sample correlation of -.703).  From the regression model of light and 
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participant sleep efficiency, we concluded that for every increase in light value, as 

measured in lux, the estimated average participant sleep efficiency dropped by 4%.   

B. SLEEP 
1. Sleep Efficiency and Average Sleep 
Figure 36 displays the average values of participant sleep and sleep efficiency.  

With the exception of participants 4, 5 and 15, there appears to be a relationship between 

participant average sleep and sleep efficiency.  Participants 5, 12, 13, 18, 19 and 20 were 

able to maintain average sleep levels between 7 and 8 hours of sleep per day.  

Participants 4, 7, 8, 14 and 16 averaged between 6 and 7 hours of sleep per day.  

Participants 9 and 15 averaged between 5 and 6 hours of sleep per day.  None of the 

differences in average sleep appear to be linked to berthing.  Participants 4, 12, 14, 15, 

16, 18 and 19 averaged between 80% and 89% sleep efficiency.  Participants 5, 7, 13, 20 

and 21 maintained between 70% and 79% sleep efficiency per day.  Participant 18 

averaged over 90% sleep efficiency during this study.   
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Figure 36.   Participant Sleep Efficiency and Average Sleep 
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2. Average Sleep and Sleep Efficiency by Day 
Figure 37 displays average participant sleep by calendar day underway 

(December, 2004).  On December 4th, average participant sleep was over 7 hours.  

However, over the next day, average sleep dropped down to 6.58 hours.  After December 

4th, average participant sleep appeared to reach a steady state of between 6 and 7 hours 

per day, suggesting acclimatization by the participants to their at-sea schedule.  On 

December 10th average sleep dropped down to 5.74 hours, but this value is low because 

participant 9 only obtained 2 hours of sleep that day.    The value for December 11th only 

covers 12 hours due to completion that day of GOMEX 05-1.  The average sleep obtained 

by the participants during the exercise was less than the 8 hours of sleep necessary to 

receive the full beneficial effects of sleep (Maas, 2001).  The whiskers extended from 

each data point represent one standard deviation.  The standard deviation of the data is 

approximately 1.5 hours across all days with the exception of December 7th and 

December 9th which had standard deviations of 0.8 and 0.7 hours, respectively.   

 

Average Sleep

0

1

2

3

4

5

6

7

8

9

10

4 5 6 7 8 9 10 11

Calendar Day Underway (December, 2004)

Av
er

ag
e 

H
ou

rs
 o

f S
le

ep
  

Average Sleep

 
Figure 37.   Average Sleep and Average Sleep +/- one Standard Deviation by Calendar 

Day 
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Figure 38 displays average participant sleep efficiency by calendar day underway 

(December, 2004).  Sleep efficiency was nearly constant throughout the exercise, 

averaging 78.86%, varying among participants between a low of 76.77% and a high of 

81.68%.  The whiskers extended from each data point represent one standard deviation.  

The standard deviations varied between 7% and 12%.   
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Figure 38.   Average Sleep Efficiency and Average Sleep Efficiency +/- one Standard 

Deviation by Calendar Day 
 

C. DEMOGRAPHIC ANALYSIS  
1. Introduction 
This section discusses analysis conducted with demographic data.  Average 

values of the environmental variables measured while the participants slept were also 

included in the analysis to examine possible correlations with the demographic and 

dependent variables.  The five dependent variables examined during this analysis were 

the total sleep a participant received during the study, each participant’s average sleep 

efficiency, the average amount of time each day a participant slept, the average amount of 

sleep periods per day and the average length of a participant’s sleep period.  We were not 

able to use total sleep time on three participants, 7, 12 and 16.  Participants 7 and 16 

removed themselves from the study after 5 and 3 days, respectively.  Participant 12 
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removed his actiwatch during the study.  Microsoft Excel and SPSS were used to 

evaluate the data.  Pearson and Spearman correlation matrices were used to analyze the 

data.  Table 7 summarizes the findings from the correlation matrices.  Light was the only 

one of the environmental variables found to correlate with any of the dependent variables.  

Light correlated with Sleep Efficiency (correlation coefficient -0.703, p-value .034, two 

tailed).  Light was also found to be correlated with berthing space (correlation coefficient 

0.976, p-value .000, two tailed).  The variable light was only measured in two berthing 

spaces, 5 and 6, due to equipment availability.  The average light value for berthing 5 

(0.472 lux) was much lower than that for berthing 6 (3.38 lux).  Berthing 5 also contained 

6 participants while berthing 6 contained 3.  It is due to these differences that care must 

be exercised in using this finding to draw any general conclusions.   

The demographic variables of participant age, height, weight, sea time and rank 

were examined in this analysis.  Sea time was found to be highly correlated with the total 

amount of sleep a participant received during GOMEX 05-1 (correlation coefficient -

0.807, p-value .003, two tailed) and also the average sleep a participant received during 

the exercise (correlation coefficient -0.778, p-value .001, two tailed).  The dependent 

variables of average sleep time and total sleep time were found to be directly correlated 

(correlation coefficient 1, p-value .000, two tailed).  We note that total sleep time had 

only 11 participants, due to participants 7, 12 and 16, mentioned above, while average 

sleep time was able to be measured for 14 participants.  For this reason, average sleep 

time will be used to describe the interaction of participant sea time and sleep.  The rest of 

the section describes the analysis in greater detail.  Appendix B contains the correlation 

matrices used to analyze the data. 
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Table 7. Correlation Table Summary 

  Measures 
Sleep  

Efficiency 
Average 

Sleep 
Total 
Sleep 

Average Number of  
Daily Sleep  

Episodes 

Average  
Length of  

Sleep Period 
Environmental Background Noise - - - - - 

  LPEAK Noise - - - - - 
  Relative Humidity - - - - - 
  Temperature - - - - - 

Demographic Berthing - - - - - 
  Age - - - - - 
  Height - - - - - 
  Weight - - - - - 

  PORT Motion - - - - - 
  Sea State  - - - - - 
  Light + - - - - 
  Sea Time - + + - - 
  Rank - - - - - 

 

2. Statistical Analysis 
a. Sea Time 
This finding that sea time is correlated with average participant sleep is 

similar to the findings of Belenky (n.d.) where it was discovered that the lower ranks and 

lower echelons of command received more sleep than higher ranks and higher echelons 

of command.  We explore this relationship in a bit more detail.  

  Figure 39 is a scatterplot of participant sea time vs. their daily average 

sleep.  The scatterplot also shows a linear relationship between the two variables and an 

R² value of .606.  The two curved lines on either side of the linear model indicate the 

95% confidence limits for the expected average sleep.   
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Figure 39.   Scatter Plot of Sea Time vs. Average Sleep 

 
Linear regression was then run in SPSS.  The estimated slope is -.181 with 

a standard error of .042.  It has an R² value of .606 which indicates that sea time accounts 

for 60.6% of the variability of average sleep for this data.   

b. Light 
 

Figure 40 is a scatterplot of participant light exposure vs. their daily 

average sleep efficiency.  The scatterplot shows a linear relationship between the two 

variables and an R² value of .495.  The two curved lines on either side of the linear model 

indicate the 95% confidence limits around the expected average sleep efficiency of the 

data.  The red circle contains the values of the participants in berthing 5.  The blue circle 

contains the values of the participants in berthing 6.  The values for participants 8 and 9 
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are indicated in green.  You can clearly see the differences between the berthing spaces.  

It appears that the values for participants 8 and 9 are driving the model.  This plot 

underscores the fact that care must be taken when interpreting these results.  It is not clear 

whether the decrease in sleep efficiency is due to light or something else causing 

differences between berthing spaces 5 and 6.   

0.00 1.00 2.00 3.00 4.00

Light

65.00

70.00

75.00

80.00

85.00

90.00

Sl
ee

p.
Ef

fic
ie

nc
y

R Sq Linear = 0.495

 
 

Figure 40.   Scatter Plot of Light vs. Sleep Efficiency 
 

Linear regression was then run in SPSS.  The estimated slope is -4.02 with 

a standard error of 1.534.  It has an R² value of .495 which indicates that light accounts 

for 49.5% of the variability of sleep efficiency for this data.   

 

 

Berthing 6 

Berthing 5 

Participants 8 and 9 
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c. Participants 8 and 9  
After observing that participants 8 and 9 appeared to be driving the 

interaction between light and sleep efficiency, we wanted to take a closer look at these 

two participants.  Table 8 is a summary of the independent, demographic and dependent 

variables examined for this section for all participants compared to participants 8 and 9.  

Participant 8 had higher than average values for background noise, LPEAK noise, 

relative humidity, light, age, sea time, weight and average number of daily sleep 

episodes.  Participant 8 had average or lower than average values for the variables 

temperature, PORT motion, sea state, rank, height, sleep efficiency, total sleep time, 

average sleep time and average length of sleep period.   Participant 9 had higher than 

average values for background noise, LPEAK noise, relative humidity, PORT motion, 

sea state, light, age, and sea time.  Participant 9 had average or lower than average values 

for the variables temperature, rank, height, sleep efficiency, total sleep time, average 

sleep time, average number of daily sleep episodes and average length of sleep period.  

For participant 8, the variable light is clearly the greatest in percentage difference 

between the values of all participants and participant 8.  For participant 9, both the 

variables light and PORT motion show the greatest in percentage difference between the 

values of all participants and participant 9.  These observations are highlighted in yellow 

and bolded in Table 8.   
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Table 8. Average Values of Variables for Participants 8 and 9 
 

Independent Variables 

Average 
Values for all 
Participants 

Values for 
Participant 8 

Values for 
Participant 9

Background Noise 55.464 57.367 57.275
LPEAK Noise 89.057 90.601 90.512
rH 64.748 69.88 71.144
Temperature 66.782 63.337 62.921
PORT Motion 0.679 0.399 1.914
Sea State 3.051 3.051 3.126
Age 33.93 35 35
Light 1.441 3.785 3.216
Rank E6 E6 E6
Sea time 7.264 8 12
Height 70.43 70 70
Weight 196.86 215 190
Sleep Efficiency 78.863 65.46 65.94
Total Sleep Time 50.785 48.78 38.18
Average Sleep Time 6.788 6.504 5.091
Average Number of Daily 
Sleep Episodes 1.297 1.73 1.07
Average Length of Sleep 
Period 5.399 3.76 4.76

 
G. CONCLUSION 

With moderate weather, the ranges of the majority of the independent variables 

were limited and statistical analysis was restricted to descriptive statistics.  The first day 

at-sea the participants averaged over 7 hours of sleep.  After the first day at sea, the 

participants averaged between 6 and 7 hours of sleep per day for the majority of the 

exercise.  This inadequate amount of sleep was also displayed in the participants average 

sleep efficiency scores.  Sleep efficiency was nearly constant throughout the exercise, 

averaging 78.86%, varying among participants between a low of 76.77% and a high of 

81.68%. 

Analysis of the demographic variables investigated whether demographic factors 

and the averaged values of the environmental variables affected participant sleep. Sea 

time was found to be highly correlated with the average amount of sleep a participant 

received during GOMEX 05-1.   
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V. DISCUSSION AND RECOMMENDATIONS  

A. DISCUSSION  
1. Methodology 
This thesis addressed the question of whether the shipboard environmental effects 

of noise, temperature, humidity, motion and light impact the sleep patterns of the crew of 

HSV-2 SWIFT.  Unfortunately, due to the limited range in the environmental conditions 

and the small number of participants, this question could not be answered.  However, this 

study does discuss a methodology from which a more robust study can be formulated to 

analyze these environmental effects on sleep. 

To conduct a more vigorous study, measurements of the environmental effects of 

noise, temperature, humidity, motion and light should be measured in disparate locations, 

under varying conditions, with a greater number of participants and, if possible, across 

multiple platforms.  This would increase the amount and range of the data to allow for a 

more powerful statistical approach than descriptive statistics.   

With the emphasis the US Navy is putting in fielding emerging hull forms with 

reduced size crews, like those of LCS and SWIFT, it is important that additional research 

be conducted to evaluate the effects of these environmental factors on sleep onboard 

these ships.  Comparing the results obtained from analyzing an emerging ship design 

against a conventional hull form, like those of a destroyer or frigate, would yield 

comparative data and allow for a better understanding of their differences. 

2. Analysis 
The first day at-sea the participants averaged over 7 hours of sleep.  After the first 

day at sea, the participants averaged between 6 and 7 hours of sleep per day for the 

remainder of the exercise.  This average sleep was less than the 8 hours of sleep 

necessary to receive the full beneficial effects of sleep (Maas, 2001).  This inadequate 

amount of sleep was also displayed in the participants average sleep efficiency scores.  

Sleep efficiency was nearly constant throughout the exercise, averaging 78.86%, varying 

among participants between a low of 76.77% and a high of 81.68%. Averaging less than 

8 hours of sleep a day will cause an increase in sleep debt.  Sleep debt is the difference 
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between an actual night’s sleep and a full night’s sleep (8 hours) and its effects are 

cumulative.  This debt must always be repaid to fully recover from the period of sleep 

deprivation (Dement & Vaughan, 1999).  Insufficient sleep can result in reduced 

performance, concentration, reaction times and memory consolidation.  Deficient sleep 

can produce increased memory lapses, accidents, injuries, behavior problems and mood 

problems (National Heart, Lung, and Blood Institute, 2004). Human performance is not 

always affected by short sleep periods, but there is a cumulative effect (Matthews et al., 

2000).  It is possible that in a MIW operation or exercise greater in length than GOMEX 

05-1, you would witness a decrease in the performance of the crew of the SWIFT.  While 

physical tasks are relatively unchanged by periods of sleep deprivation, cognitive tasks 

are greatly affected (Belenky et al., 1987; How et al., 1994).  With an increase in sleep 

deprivation among the crew of the SWIFT while coordinating the movements of other 

US Navy warships in a MIW exercise or operation, mistakes could be made that 

adversely impact the exercise or operation. 

Analysis of the demographic variables investigated whether demographic factors 

and the averaged values of the environmental variables affected participant sleep. Pearson 

product moment of correlation was the only test that provided for the accuracy and 

variability needed for this analysis.  From the model of sea time and average participant 

sleep we concluded that for every year of sea time a participant had, his sleep dropped by 

approximately 11 minutes per day.  This finding is similar to the findings of Belenky 

(n.d.) where it was discovered that the lower ranks and lower echelons of command 

received more sleep than higher ranks and higher echelons of command.  This was a 

troubling, but not unexpected finding.  Shay (1998) discusses the myth of self-deprivation 

(including sleep) in military organizations.  The ethos of self deprivation in the military 

can lead to death and serious injury and is therefore dangerous for the men and women 

serving beneath the individuals in the military who follow it.  As has been discussed 

above, cognitive ability is greatly affected by sleep deprivation (Belenky et al., 1987; 

How et al., 1994).  The very people the military depends upon to make clear and effective 

decisions are impaired by sleep deprivation.  With the added emphasis being placed on 

reducing crew sizes onboard ships and the increased workload demanded by the 



75 

asymmetric nature of the Global War on Terror (GWOT), it is important that 

considerations for sleep be made for military leaders. 

Light was also found in this analysis to have a significant impact on participant 

sleep efficiency.  From the model of light and participant sleep efficiency, we concluded 

that for every increase in light value, as measured in lux, participant sleep efficiency 

dropped by 4%.  Exposure to light affects sleep (Lewy, et al., 1980; Czeisler et al., 1989; 

Boivin, et al., 1994; Cauter & Buxton, 2000; Duffy, et al., 1996; Czeisler et al., 1989; 

Mitchell et al., 1997).  Light exposure affects sleep through the inhibition of melatonin 

secretion in humans (National Institute of Neurological Disorders and Stroke, 2005).  

Melatonin is a naturally occurring hormone that induces sleep (Maas, 2001).  

Additionally, circadian rhythms can shift with exposure to light (Czeisler et al., 1989, 

1994).  Circadian rhythms are “an intricate and orderly series of psychological and 

physiological changes that occur approximately every twenty-four hours” (Maas, 2001, p. 

46).  Disturbances in circadian rhythms often result in disturbances in sleep (Arendt, 

2000). A US Navy warship’s daily schedule determines when lighting in berthing spaces 

is either on or off.  Additionally, the brightest lights onboard may be in the bunk spaces 

(Hunt & Kelley, 1995).  Environmental determinants of light exposure in the berthing 

spaces have been found to affect the sleep of the SWIFT’s crew and underline the 

importance of further research into this area. 

B.  RECOMMENDATIONS  
1. Lessons Learned 

a. Extreme Environments 
Due to ship availability, this study was conducted in the Gulf of Mexico 

during the winter.  Future studies should be conducted in more extreme locales, such as 

the North Atlantic, where the effect of an independent variable upon sleep may be more 

easily identifiable.   

b. Equipment 
Equipment availability also constrained the range of this study.  Placing 

additional noise dosimeters, temperature and humidity monitors and actiwatches in more 

berthing spaces would have allowed for a more complete study.  It is further 

recommended that a noise survey of the ship be conducted prior to the experiment to 
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identify possible noise sources.  Noise dosimeters can then be placed in areas with 

suspected noise offenders, such as engineering spaces, to identify noise sources 

responsible for sleep disruption and to correlate this information with noise dosimeters in 

the berthing spaces.  Motion accelerometers should also be used to collect ship motion 

data.  This information can then be used together with weather observations to better 

identify the effects of ship motion on sleep.   

2. Future Research 

A combination of environmental and personal factors will affect the sleep of 

sailors and marines living onboard US Navy warships.  Sleep deprivation will more likely 

occur in more extreme operational conditions than seen in this study.  For this reason, 

further studies should be conducted in extreme operational environments, such as those 

found in the Arabian Gulf during summer.  Additionally, studies such as the one 

discussed in this thesis should be completed on different platforms to determine the 

differences in environmental factors that affect sleep between hull types so that the 

results can be applied to future vessel design.   
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APPENDIX A.  ACTOGRAMS 
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APPENDIX B.  CORRELATION MATRICES 
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